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INTRODUCTION 

 

 The theory of Laplace transforms has been extensively used in mathematical 
statistics, especially in connection with the study of properties of distributions. 
Even though the theory was originated by Laplace in the eighteenth century in 
connection with his studies on the power series technique for solving certain 
difference equations arising in the mathematical treatment of games of chance, 
its potential as a powerful tool in statistics was realized late until the discovery of 
the famous inversion theorem which helps one to uniquely determine the 
distribution. The method of Laplace transforms has the advantage of directly 
giving the solution of differential equations with given boundary values, without 
the necessity of first finding the general solution and then evaluating from it the 
constants.       
     If  f(x) is a single valued function of a real variable X, defined almost every 

where for  x   0 and is such that  

∫ |
∞

0
f(x) | 𝑒−𝑘𝑥 dx 

Converges for some real value k, then f(x) is said to be Laplace transformable and  

ф𝑓(s)  =  ∫ 𝑒−𝑠𝑥∞

0
 f(x) dx                                    ----------------- (1.1) 

is the Laplace transform of f(x), where s = x + iy is a complex variable [Doetsch 
(1970)]. 
           One Problem of special interest in probability theory is “under what 
conditions a rational Laplace transform corresponds to a probability density 

function”. This problem has been examined by several researchers. Lukacs and 
Szasz (1951,1952,1952a,1954) have developed some conditions in terms of 
Vandermonde determinants and non-negative trigonometric polynomials. Cox 
(1955) has discussed this question in the context of  phase type distributions. 
Zemanian (1959,1960) has provided sufficient conditions using zeros and poles of 
Laplace transforms. Steutel (1967,1970) and Bondesson(1981) have studied the 
problem in the context of infinite divisibility. 
Sumita and Masuda (1987) have considered Laplace transform with negative 
zeros and poles and have developed simple and useful conditions for Laplace 
transforms having single negative zeros and single negative poles to corresponds 
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to a probability density function. Further they have identified some probability 
distributions having Laplace transforms with single negative zeros and single 
negative poles. It includes mixture of  n independent exponential random 
variables and sums of n independent exponential random variables. 
Characterization theorems for these classes are given in terms of zeros and poles 
of the Laplace transform. 
           Motivated by this, in the present work we consider Laplace transforms 
having complex zeros and multiple negative poles. The class of probability density 
functions having Laplace transforms with complex zeros and multiple negative 
poles contains the mixture of  n independent gamma variables and sums of n 
independent gamma variables. Characteristic properties of these distributions are 
obtained based on certain representations of the Laplace transform. 
  Most of the work in modeling statistical data using zeros and poles in the Laplace 
transform is centered around the continuous case. Only very little work seems to 
have been done in this direction in the discrete set up. When we turn our 
attention to the discrete set up the probability generating function comes up as a 
handy tool instead of Laplace transform. In the light of the above observation, we 
look in to the class of probability mass functions having probability generating 
function with positive poles and complex zeros. This class contains finite mixture 
of geometric and negative binomial distributions as well as their convolutions. 
Based on certain forms of representation of the generating functions, 
characterization theorems are obtained with regard to these models. 
        The present work is organized into five chapters of which after the present 
one, a review of some basic properties of Laplace transforms, which are required 
in the sequel, distributions having Laplace transforms with zeros and poles and 
properties and applications of probability generating functions are included in 
Chapter II. 
        We devote Chapter III to present some new results on distributions having 
Laplace transforms with complex zeros and negative poles. Situations where 
mixture of gamma distributions, which is a member of the above class, arise are 
examined and characterization theorems based on different forms of 
representation of its Laplace transform are derived. Further some results for 
convolution of gamma distributions are also presented in this chapter. 
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CHAPTER II 

SOME PRELIMINARIES 

   In the present chapter we give a brief outline of the results that are of relevance 
in the succeeding chapters along with an outline of the important developments 
concerning probability distributions having Laplace transforms / generating 
functions with zeros and poles. 

2.1  Some properties of Laplace Transforms. 
The Laplace transform of a continuous single valued function of a real variable X , 
0 ≤ X <∞ , defined by (1.1) has the property that the inverse Laplace transform 
can be expressed as an integral which can be evaluated using complex integration 
methods. In fact , if f(x) and  𝑓𝐼(x) are continuous functions on  x ≥ 0 and f(x) = 0 
for x < 0 and if f(t) is  O( 𝑒𝑟0𝑡 ) and ϕ𝑓(s)  is given by  

f(x)  =  
1

2𝜋𝑖
∫ 𝑒𝑠𝑥𝑟+𝑖∞

𝑟−𝑖∞
ϕ𝑓(s)  ds                       ---------------------------- (2.1) 

where s is complex and r is apositive constant.(Doetsch (1970)).  In particular if 
F(.) is a distribution function for which the Laplace transform ϕ𝑓(s) exists for s > r 

then at all points of continuity , (Feller (1971)},  

        F(x)  = lim
𝑎 →∞

∑
(−𝑎)𝑛

𝑛 !𝑛 ≤𝑎𝑥 𝜙𝑛(a)                ---------------------------- (2.2) 

If  f(t)  is a function that is piecewise continuous on every finite interval in the 
range  t ≥ 0  and satisfies  
          | f(t) | ≤ M 𝑒𝑡𝛾                                                  ------------------------------  (2.3) 
for all  t ≥ 0 and for some constants  𝛾 and M , then the Laplace transform of f(t) 
exists for all s >𝛾.  
           Another integral transform which has gained considerable interest is the 
Fourier transform is defined as  

𝛹𝑓(t)  =  ∫ 𝑒𝑖𝑡𝑥∞

−∞
 f(x) dx                            ------------------------------ (2.4) 

        If f(x) is a probability density function, (2.4) turns out to be the characteristic 
function, which is fundamental in probability theory. The Laplace transform is a 
linear operator in the sense that for any two functions f(t) and g(t) whose Laplace 
transform exist,  
𝜙𝑠𝑓(𝑡)+ 𝑏𝑔(𝑡) (s)  =  a𝜙𝑓(𝑡)(s) + b 𝜙𝑔(𝑡)(s)     ---------------------------  (2.5) 
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where a and b are constants.  
If  𝑓1(t) and 𝑓2(t) satisfy the conditions of the existence theorem, then the product 
of their transforms   𝜙𝑓1

(s)  and 𝜙𝑓2
(s) is the transform 𝜙𝑓(s) of the convolution 

f(t) of 𝑓1(t) and 𝑓2(t) defined by  
f(t) =  (𝑓1 ∗ 𝑓2)(t)  

=  ∫ 𝑓1
𝑡

0
(x)  𝑓2(t-x) dx                              --------------------------  (2.6) 

This represents the probability density function of the sum of two independent 
random variables with densities 𝑓1(.) and 𝑓2(.).  
            If  𝑓1(.) , 𝑓2(.) , . . . , 𝑓𝑛(t) corresponds to the probability density functions of 
independent random variables  X1,X2, . . . Xn and if  f = f1*f2* . . . *fn, then          
𝜙𝑓(s)  =  ∏ 𝜙𝑓𝑖

𝑛
𝑖=1 (s)                                    ---------------------------  (2.7) 

The Laplace transform 𝜙𝑓(s)  on [0 , ∞ ) is completely monotone if it possess 

derivatives 𝜙𝑓
(𝑛)(s) with respect to s of all orders and 

(−1)𝑛𝜙𝑓
(𝑛)(s) ≥ 0                                      ---------------------------  (2.8) 

              The Bernstein’s (1928) theorem states that the function defined on [0,∞) 
is the Laplace transform of a probability distribution f , if and only if it is 
completely monotone and   𝜙𝑓(0)  = 1.  

    A distribution F is infinitely divisible if for every n there exists a distribution Fn 
such that  

                   F =  𝐹𝑛
𝑛∗

         ------------------   (2.9) 

where𝐹𝑛
𝑛∗

 is the convolution of n distribution functions.  

            The function  𝜙𝑓
(𝑛)(s) is the Laplace transform of an infinitely divisible 

distribution if and only if it is of the form  
W  =𝑒−𝛹                                                        -------------------  (2.10) 
where 

                 (𝜆)  =    ∫
1− 𝑒−𝜆𝑥

𝑥

∞

0
P{dx}                            --------------------  (2.11) 

and   P  is a measure such that  

∫
1

𝑥

∞

0
P{dx}   <∞     --------------------  (2.12) 

Key references concerning Laplace transforms and Fourier transforms are Widder 
(1946,1961) , Doetsch(1970) , Feller(1971) and Kreyszig(1993). 
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2.2. Probability distributions having Laplace transforms with negative  
zeros and poles. 
            The importance of characteristic functions as a powerful tool in the theory 
of probability is highlighted in the works of Lukacs (1970,1983) and Laha(1982). 
One of the problems of supreme importance in this study is that of obtaining 
necessary and sufficient conditions for complex valued function φ(t), of a real 
variable t, to be a characteristic function. The works of Khintchine(1937), 
Levy(1939), Cramer(1939), Polya(1949) provides affirmative answers to this 
problem. 
Lukacs and Szasz (1951) have obtained a necessary condition that a polynomial 
without multiple root must satisfy in order that its reciprocal be a characteristic 
function. If  φ(t) can be written in the in the form  

φ(t)  =  {(1 - 
𝑖𝑡

𝑣1
  )(1 - 

𝑖𝑡

𝑣2
  ) . . . (1 - 

𝑖𝑡

𝑣𝑛
  )  }-1    ------------------- (2.13) 

where v1,v2,. . . ,vn  are complex numbers, the zeros of the polynomials are then 
given by  
tj =  -ivj,   j = 1,2,. . ., n. 
            For polynomials without multiple roots the zeros of the polynomials can be 
divided in to four groups. 

I) Zeros iβh,  (h= 1,2,. . . ,m) on the positive imaginary axis(βh> 0); 
II) Zeros - iαj,  (j= 1,2,. . . ,m) on the negative imaginary axis(αj> 0); 
III) P  symmetric pairs of complex roots in the upper half planes  iwkand 

𝑖 𝑤𝑘̅̅ ̅̅ ̅  where wk = ck+ idk,  ck> 0 , dk> 0 ( k=1,2,...,p) 
IV) n  symmetric pairs of complex roots in the lower half planes  -ivm  and  

-i𝑣𝑚 ̅̅ ̅̅  
where vm =  am + ibm,    am   > 0,  bm> 0,  (m = 1,2,. . .,n) 
 
 In the light of the above observations (2.13) can be written as  

φ(t)={∏ (𝑣
𝑗=1 1- 

𝑖𝑡

𝛼𝑗
  )∏ (

𝜇
ℎ=1 1+ 

𝑖𝑡

𝛽ℎ
 )∏ (

𝑝
𝑘=1 1+ 

𝑖𝑡

𝑤𝑘
  )(1- 

𝑖𝑡

�̅�𝑘
 )∏ (𝑛

𝑚=1 1- 
𝑖𝑡

𝑣𝑚
 )(1- 

𝑖𝑡

𝑣𝑛
  )}-1 

                                                                                                        ---------------- (2.14) 
Based on the representation (2.14), the following result is established in Lukacs 
and Szasz(1951).  
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Theorem 2.1 
               If the reciprocal of a polynomial without multiple roots is a characteristic 
function then the following conditions are satisfied.  

a) The polynomial has no real roots. Its roots are located either all on the 
imaginary axis or in pairs± b + ia, symmetric with regard to this axis. 

b) If  b + ia (a,b real ; a ≠ 0) is a root of the polinomial then it has at least one 
root iα  such that sgnα = sgnα  and  | α | ≤ | a |. 
 
Takano (1951) modified the above result deleting the assumption that the 
polynomial has no multiple roots. Moreover it is established that if the 
degree of the polynomial is less than 4, the condition is not only necessary 
but also sufficient. The results are summarized in the following theorem. 
 

Theorem 2.2. 

                    A necessary and sufficient condition that the complex valued 
function  
φ(t)=  {c0 + c1(it) + c2(it)2 + . . . +cn(it)n-1}-1    ----------------(2.15) 
cn≠ 0, of a real variable t for n ≤ 4 to be a characteristic function is that 
 (i)  c0 = 1  and cj are real 
(ii)  thepolynomial with real coefficients  
Q(z) = 1 + c1z + c2z2 + . . . +cnzn has no pure imaginary roots and  
(iii)  If  a± ib (a ≠ 0, b ≠ 0) is a pair of complex roots of the polynomial Q(z) 
then it has  
at least one root c such that sign c = sign a and |c| ≤ |a|. 
Lukacs and Szasz (1952) have proved that if a characteristic function φ(t) is 
analytic in a neighborhood of the origin, then it is analytic in a horizontal 
strip and can be represented in this strip by a Fourier integral where either 
this strip is in the whole plane or it has one or two horizontal boundary 
lines. The purely imaginary points on the boundary of the strip of 
convergence are singular points of   φ(z). As a corollary to this result it is 
established that a necessary condition that a function, analytic in some 
neighborhood of the origin, be a characteristic function is that in either half 
plane the singularity nearest to the real axis be located on the imaginary 
axis. 
       Further it is established that an analytic characteristic function of an 
infinitely divisible distribution can have no zeros inside its strip of 
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convergence. As a consequence of this it is established that an infinite 
divisible characteristic function can be obtained as the product of two non 
infinitely divisible characteristic functions. As an illustration they have 
considered 
 

φ(t)=  
(1+ 

𝑖𝑡

𝑣
)(1+ 

𝑖𝑡

�̅�
 )

(1− 
𝑖𝑡

𝑎
)(1− 

𝑖𝑡

𝑣
)(1−  

𝑖𝑡

�̅�
 )
   ,  v = a + ib. ------------(2.16) 

Then φ(t) is a characteristic function if  

b≥ 2√2 a                                        ----------------------------------(2.17) 
Also φ(-t) is a characteristic function.  
Now (t) = φ(t) φ(-t)  

               =  
1

(1+ 
𝑡2

𝑎2)
 ,                               ------------------------------(2.18)  

Which corresponds to the characteristic function of the Laplace distribution 
which is infinitely divisible. However φ(t) and φ(-t) are analytic 
characteristic function with zeros in the strip of convergence and hence 
they are not characteristic functions of infinitely divisible distributions. 
               In a subsequent paper Lukacs and Szasz (1952a) have improved 
upon Theorem (2.1) by imposing a restriction on the polynomial (2.13) . The 
result is reproduced as Theorem(2.3) below. 
 
Theorem 2.3 
          The reciprocal of a polynomial whose roots are all single and have the 
same imaginary part is the Fourier transform of a distribution function if 
and only if  
(i) The polynomial has one purely imaginary root ia (a ≠ 0) and n pairs of 

complex roots ± bk + ia , ( 0 < b1< b2< . . . <bn,  k = 1,2,...,n) 
(ii) The determinant  

Sin2𝑏1ɵ

2
 , sin2𝑏2ɵ

2
, . . . , sin2𝑏𝑛ɵ

2
 

g(ɵ)     =        𝑏1
2 ,     𝑏2

2 ,  . . .  ,      𝑏𝑛
2                 ≥  0   for all ɵ   -------(2.19) 

                       . . .    ,     . . . ,   . . .  ,     . . .  

                     𝑏1
2(𝑛−1), 𝑏2

2(𝑛−1) , ... , 𝑏𝑛
2(𝑛−1) 
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           Observing that the function  g(ɵ)  given by (2.19) is a cosine polynomial , 

situations where g(ɵ) is non negative for several configurations of the integers 

such as bj = i , bj = 2i-1, j = 1,2,...,n are also investigated. 

Lukacs and Szasz (1954) defines the general Vandermonde determinant formed 

from the numbers  𝑏1
2,   𝑏2

2 ,  . . .  ,    𝑏𝑛
2  with exponents k, 1,2,...,(n-1) as  

 

𝑏1
2𝑘 ,   𝑏2

2𝑘, . . . ,     𝑏𝑛
2𝑘 

vk       =         𝑏1
2 ,     𝑏2

2 ,  . . .  ,     𝑏𝑛
2                                -------(2.20) 

                                . . .    ,     . . . ,   . . .  ,     . . .  

                        𝑏1
2(𝑛−1), 𝑏2

2(𝑛−1) , ... , 𝑏𝑛
2(𝑛−1) 

Denoting by g(ɵ),  Vandermonde determinant formed from vk with first raw 

replaced by 1 – λiCosbiɵ  with   

𝜆𝑗    =   ∏ (1 −  
𝑏𝑗

2

𝑑𝑘
2 )𝑚

𝑘=1  , j = 1,2,...,n. 

they obtained the following condition for a rational function to be a characteristic 
function. 
Theorem 2.4. 
           The rational  φ(t) is a characteristic function if and only if  

   1-𝜆1Cos 𝑏1ɵ, 1-𝜆2Cos 𝑏1ɵ , . . . , 1-𝜆𝑛Cos 𝑏1ɵ 

g(ɵ)       =           𝑏1
2     ,        𝑏2

2         ,  . . .  ,        𝑏𝑛
2                             ≥  0  ------(2.21) 

                              . . .        ,       . . .           ,   . . .  ,     . . .  

                            𝑏1
2(𝑛−1), 𝑏2

2(𝑛−1)      ,  . . .  ,      𝑏𝑛
2(𝑛−1) 
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If the rational function has no zeros, that is, if  φ(t) is the reciprocal of a 
polynomial whose roots are –ia, -ivj, -i𝑣�̅� , (j = 1,2,...,n), then the following 

theorem holds. 
Theorem 2.5 
                The function φ(t) is a characteristic function if and only if  

       1-Cos 𝑏1ɵ, 1-Cos 𝑏1ɵ , . . . , 1-Cos 𝑏1ɵ 

g(ɵ)       =              𝑏1
2     ,        𝑏2

2         ,  . . .  ,      𝑏𝑛
2                 ≥  0       -------(2.22) 

                               . . .        ,       . . .           ,   . . .  ,     . . .  

                            𝑏1
2(𝑛−1), 𝑏2

2(𝑛−1)      ,  . . .  ,      𝑏𝑛
2(𝑛−1) 

For all ɵ. 

 
                Most of the investigations discussed above centers around zeros and 
poles in the characteristic function. Even though Fourier transform is defined for 
all bounded measures, it reduces to the characteristic function when the 
measures have unit mass. However the characteristic function of f(.) reduces to 
the Laplace transform  φf(s), of f(.) when f is a probability density function on [0 , 
∞)  and  s = - it .  Hence it is usual to study the properties of distributions based 
on the functional form of  Laplace transform . Cox (1955), in connection with his 
studies on the use of complex probabilities in stochastic process, consider 
probability density functions having Laplace transforms of the form  
 

φf(s) =  
(1+ 

𝑠

𝜇
 )

(1+ 
𝑠

𝜃1
 )(1+ 

𝑠

𝜃2
 )
 -----------------  (2.23) 

where𝜇, 𝜃1and 𝜃2 are real. Based on the above representation of φf(s) he has 
established the following result. 
Theorem 2.6 
         The function φf(s) , defined in (2.23) represents the Laplace transform of a 
probability distribution function if and only if  
𝜇 ≥min(𝜃1,𝜃2)                          ---------------------- (2.24) 
The investigations of Lukacs and Szasz discussed above centers around situations 
where all the poles and zeros in the characteristic function are simple and have 
the same real parts. Instead of using characteristic function ,Zemanian (1959, 
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1960) has studied Laplace transforms having multiple zeros and poles. Specifically 
they study probability distributions having Laplace transforms in the form  

φf(s) =  
∏ (ℎ

𝑖=1 𝑠− ƞ𝑖) ∏ (𝑠−𝑣𝑖)
𝑔
𝑖=1

∏ (𝑚
𝑖=1 𝑠−𝜌𝑖 ) ∏ (

𝑞
𝑖=1

𝑠−𝜉𝑖 )
 ----------------(2.25) 

where  theƞ𝑖  and 𝜌𝑖  are real and  𝑣𝑖   and 𝜉𝑖   are complex. Here the corresponding 
probability density function is the sum of the exponentials except (possibly) for a 
constant. Moreover the complex poles occur in conjugate pairs , and all the poles 
will have negative real parts. 
Steutel (1967) has examined infinite divisibility of exponential mixtures. For 
mixtures of exponential probability density functions in the form  

f(x) = ∑ 𝑎𝑗𝜆𝑗𝑒−𝜆𝑗𝑥𝑛
𝑗=1                                 ------------------- (2.26) 

𝑎𝑗   ≠ 0,     ∑ 𝑎𝑗
𝑛
𝑗=1    = 1, and  𝜆𝑗>0  with  0 <𝜆1<𝜆2 <. . . <𝜆𝑛 the characteristic 

function simplyfies to   

φf(t) = ∑ (𝑛
𝑗=1

𝑎𝑗𝜆𝑗

𝜆𝑗− 𝑖𝑡
 )  

                            =  
𝑃(𝑡)

∏ ( 𝜆𝑗− 𝑖𝑡)𝑛
𝑗=1

--------------------(2.27) 

Where p(t) is a polynomial of degree not exceeding (n-1) . Using the above 
representation for φf(t) , which  cannot have more than (n-1) zeros, it is 
established that (2.26) is infinitely divisible if in the sequence {a1,a2, . . . ,an} there 
is no more than one change of sign.  
                In a subsequent work Steutel (1970) has also provided a simple and 
useful sufficient condition for a real valued function f(.) to be a probability density 
function based on the form of its Laplace transform. The result is given in the 
following theorem.  
Theorem 2.7 
            Let f(.) be a real valued function on [0, ∞) such that   

φf(s) =   
∏ ( 1+ 

𝑠

ƞ𝑖
)𝑚

𝑖=1

∏ ( 1+ 
𝑠

𝜃𝑗
)𝑛

𝑗=1

        ,   m > 0.            -------------(2.28) 

Then  [𝜃𝑖<ƞ𝑖,  i = 1,2, . . . , m]  ⇒  [ f is a p.d.f. and is infinitely divisible]  
Sumita and Masuda have studied the class of real functions on [0, ∞)  having 

Laplace transforms with only negative zeros and poles. If  

Ω   =          f \ φf(s) =   
∏ ( 1+ 

𝑠

ƞ𝑖
)𝑚

𝑖=1

∏ ( 1+ 
𝑠

𝜃𝑗
)𝑛

𝑗=1

                 -----------------(2.29) 
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0 ≤ m < n <∞,  ƞ𝑖 ≠  𝜃𝑗 ,  ƞ𝑖 ,  𝜃𝑗> 0  for all i and j and Ω+ is the class of all 

probability densities in Ω, then it is shown that Ω+ is closed under convolution but 

not closed under mixing.  

                 First up all they establish a necessary condition for a real valued function 
f to belong to Ω+  which is given as Theorem 2.8 below. 
Theorem 2.8 
Let  f∈ Ω+  with  m > 0 in (2.29) then 𝜃1<ƞ1. 
After proving this necessary condition they proceed to seek necessary and 
sufficient conditions for Laplace transforms of the form (2.29) to correspond to a 
probability density function. In the special case when m = 1  and n= 2 in Theorem 
(2.8), it is established that the condition 𝜃1<ƞ1  is necessary and sufficient for f(.) 
to belong to Ω+ . In case when m = 2, and n = 3 and all poles are of multiplicity 
one the following theorem is established.  
Theorem 2.9 
                    Let f ∈ Ω such that  

φf(s) =  
(1+ 

𝑠

ƞ1
 )(1+ 

𝑠

ƞ2
 )

(1+ 
𝑠

𝜃1
 )(1+ 

𝑠

𝜃2
 )(1+ 

𝑠

𝜃3
 )
                       --------------(2.30) 

where 0 <𝜃1<𝜃2<𝜃3.  Then  f∈ Ω+  if and only if  

(a) 𝜃1<ƞ1 ,  𝜃2<ƞ2. 
Or 

(b) 𝜃1<ƞ1 ≤  ƞ2 < 𝜃2<𝜃3  and  
 
{(𝜃3−ƞ1)(𝜃3−ƞ2)}𝜃2−𝜃1{(𝜃1−ƞ1)(𝜃1−ƞ2)}𝜃3−𝜃2

{(𝜃2−ƞ1)(𝜃2−ƞ2)}𝜃3−𝜃1
≥  1. 

 
Observing that characterization of the class Ω+ in terms of ƞ𝑖𝑎𝑛𝑑  𝜃𝑗 is a 

hard task for larger values  of m and n, the case when m = 3 and n = 4 is 
examined and the relative positions of ƞ𝑖𝑎𝑛𝑑  𝜃𝑗are located assuming   

𝜃1<𝜃2<𝜃3 <  𝜃4. 
 
                             The investigations of Sumita and Masuda (1987) center 
around probability densities having Laplace transforms with single negative 
zeros and single negative poles. However there may arise situations in 
which there can be multiple poles and multiple zeros. For instance the 
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Laplace transform corresponding  to mixture of gamma densities posses 
multiple zeros and multiple poles. It is of special interest to examine 
properties of distributions having Laplace transforms with multiple zeros 
and poles, and this is undertaken in chapter III. 
 
Sumita and Masuda (1987) further examine various classes of probability 
density functions in Ω+ . The class of finite mixture of exponential densities, 
denoted by CMn , is defined as   
 

CMn=  {f/ f(x) = ∑ 𝑝𝑖𝜃𝑖𝑒−𝜃𝑖𝑥𝑛
𝑖=1 ,  0 < n <∞,  𝜃𝑖 , 𝑝𝑖> 0,  

∑ 𝑝𝑖
𝑛
𝑖=1 =1,𝜃𝑖≠𝜃𝑗,fori≠j}  ---------(2.31) 

and the union of CMn is  
CM  =⋃ 𝐶∞

𝑛=1 Mn 
The class of probability density functions each of which is a finite 
convolution of exponential distribution is defined as  
PF𝑛

∗  = {f \ f =  𝑓1 ∗ 𝑓2 ∗ … ∗ 𝑓𝑛,  0<n<∞,  𝑓𝑖(𝑥) = 𝜃𝑖 exp(- 𝜃𝑖𝑥), 𝜃𝑖>0, 1≤i ≤ n} 
and 
               PF∗ =  ⋃ P∞

𝑛=1 F𝑛
∗  

It is established that both  CMn  and PF𝑛
∗  are proper subsets of Ω+ . Also 

based on the form of Laplace transform, the following characterization 
theorem is established. 
Theorem 2.10  
 

(a) [ f ∈CMn ]  ⇔ ф𝑓(s)   =    
∏ (1+

𝑠

𝜂𝑖
)𝑚

𝑖=1

∏ (1+
𝑠

𝜃𝑗
)𝑛

𝑗=1

    O<𝜃1<𝜂1 < 𝜃2<. . . < 𝜃𝑛 

 

(b) [ f ∈PF𝑛
∗  ]  ⇔   ф𝑓(s)   =    

1

∏ (1+
𝑠

𝜃𝑗
)𝑛

𝑗=1

,   𝜃𝑗> 0,  I ≤ j ≤ n    

(c)  Both CMn  and PF𝑛
∗  are proper subsets of Ω+ .  
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         Another class of distributions under investigation is the class of 
probability density functions inCMn  or   PF𝑛

∗   and probability density 
functions corresponding to sum of two independent random variables, 
one with a probability density function in CMr and theother with a 
probability density functionin PF𝑙

∗  with n = r + l. This class, denoted by 
CMPFn  is defined by  
CMPFn  =  {f \ f∈CMn⋃. PF𝑛

∗   or  f = g * h,  g ∈ CMr , h ∈ PF𝑙
∗ and n=r+l } 

and 
        CMPF =  ⋃ C∞

𝑛=1 MPFn 
A characterization theorem for the CMPFn  class of distributions is 
reproduced  as Theorem 2.11 below 
 
Theorem 2.11 
 

     [f∈ CMPFn ]  ⇔     f∈ Ω+ with  ф𝑓(s)   =    
∏ (1+

𝑠

𝜂𝑖
)𝑚

𝑖=1

∏ (1+
𝑠

𝜃𝑗
)𝑛

𝑗=1

 

such thatO<𝜃1<𝜂1 < 𝜂2<. . . < 𝜂𝑚 < 𝜃𝑛,  0≤m<n  and for i≤j≤n-1, 

Ij = (𝜃𝑗 , 𝜃𝑗+1) contains at most one of  𝜂𝑖′𝑠. 

 

          Other classes of interest in Ω+ are the classes of unimodal, strongly 

unimodal, log-concave probability density functions on [0,∞) and the 

class of probability density functions each of which is expressed as a 

finite convolution of probability density functions in CMn , denoted by U, 

SU, LCC and SCM. They are defined as follows. 

U = {f | there exists a real number x0 such that f(x) ≤ f(y) for x ≤ y ≤ x0 

and  f(x) ≥ f(y) for  x0 ≤ x ≤ y}.  

SU = {f | g ∈ U  ⇒ f * g  ∈ U,  where the asterisk denotes convolution} 

LCC = {f |log f(x) > 0} and there are no gaps in the interval of support}. 
SCM = {f \ f =  𝑓1 ∗ 𝑓2 ∗ … ∗ 𝑓𝑛, 𝑓𝑖 ∈ C𝑀𝑚𝑖

, mi> 0, 1 ≤ i ≤ n}.  
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Sumita and Masuda(1987) summarizes the relationship among the 
various classes of distributions using the following diagram. Here the 
arrow  A→ B  means that A is a proper subset of B. The symbol 
 

A 

 

                B                                           C 

means that A→B and B→C and f ∈ A, g ∈ B  implies  f*g ∈ C.  

 

          U            LCC               SU          PF*           PF𝑟
∗ 

                                                     CM         CMl 

                       SCM         CMPF                             CMPFn 

 
The relevance of the above classes of distributions in applied probability is also 
worth mentioning .Feller(1971) observes that for rational Laplace transform of 
the form  

ф(λ) = 
𝑈(𝜆)

𝑉(𝜆)
          ------------------  (2.33) 

where U(.) and V(.) are polynomials without common root and degree of  U(.) is 
lower than that of V(.), if V(λ) = 0 has m distinct (real or imaginary) roots 𝜆1, 𝜆2, … 
, 𝜆𝑚, then ф(λ) admits the representation 

ф(λ) =  
𝛿1

𝜆− 𝜆1
 +  

𝛿2

𝜆− 𝜆2
+ … + 

𝛿𝑚

𝜆− 𝜆𝑚
 -----------(2.34) 

            The situation where such a representation admits multiple poles and zeros 
is of special interest and this aspect is investigated subsequently in Chapter 3. 
Many analytic functions belong to the class of meromorphic functions admit a 
partial fraction expansion of the form (2.34), the finite sum on the right being 
replaced by a uniformly convergent series. 
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In  connection with busy periods and related branching process Feller(1971) 
consider Laplace transforms of a probability density function f(x) in the form  
ф𝑓(s)  =  ʟ(s + λ + - λβ(s))                                ------------------ (2.35) 

where 

              L(s)  =∫ 𝑒−𝑠𝑥∞

0
 a(x) dx                    

and 

            β(s)  =∫ 𝑒−𝑠𝑥∞

0
 b(x) dx ,  

λ>0 and both a(x) and b(x) are probability density functions. The expression (2.35) 
is used by Gaver (1962) and Keilson (1962) to study queues with service 
interruptions and priority queues.  
2.3  Probability generating function. 
         For a discrete random variable X in the support of {0,1,2, …} and probability 
mass function f(x) , the probability generating function is defined as  
𝑔𝑓(s)  =  ∑ 𝑓∞

𝑥=0 (x) 𝑠𝑥 ----------------------------- (2.36) 

where  |s| ≤ 1. 
 
                  Applications of probability generating function in the study of 
distributional properties is available in Feller (1968) and Johnson ,Kotz and Kemp 
(1992). 
                 Abate and Whitt (1996) observes that for the special case of discrete 
distributions the Laplace – Stieltjes transform become probability generating 
function upon making the change of variable z = 𝑒− 𝑠 and that the generating 
function arises directly when we consider the moment generating function 
constructed from the power series representation of the Laplace Stieltjes 
transform 

ф𝑓(s) =∑
𝑚𝑘(−𝑠)𝑘

𝑘!
∞
𝑘=0      with  𝑚0 = 1. 

              In literature generating functions have received more attention than 
Laplace – Stieltjestransform , primarily because of their prominent role in 
combinatorics . The use of generating functions in combinatorics is extensively 
discussed in Wilf (1994). 
 
2.4.  Mixture distributions. 
               Finite mixture distributions have been extensively used in literature to 
model data in several branches of learning such as pattern recognition, remote 
sensing, mathematical geology etc. Smith (1985) has  listed the following 
applications of mixture distributions. 
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(1) Fisheries research, where the k components (categories) are different ages. 
(2)  Sedimentology , where the categories are mineral types  
(3)  Medicine, where the categories are disease states. 
(4)  Economics, where the categories are discontinuous forms of behavior. 

 
         A systematic treatment of the structure of finite mixture distributions 
and the method of analysis of data from mixture distributions is given in 
Everitt and Hand (1981) and Smith (1985). Applications in speech analysis  
and in image analysis are given in Titterington (1990). There is also 
information about many special cases in the volume of Johnson and Kotz 
(1969,1970,1972). 
          Suppose that a random variable X takes values in a sample space ₰ 
and that its distribution can be represented by a probability density 
function( or probability mass function in the case of discrete X) of the form  
p(x) = 𝑎1𝑓1(x) + 𝑎2𝑓2(x) +    ….   + 𝑎𝑘𝑓𝑘(x)     ------------ (2.37) 

x ∈ ₰ , 𝑎𝑗> 0,   𝑎1 +  𝑎2 +  … + 𝑎𝑘 = 1 ,   𝑓𝑖(x) ≥ 0,  ∫ 𝑓𝑖
.

𝑥
(x) dx = 1,  j = 1,2, … ,k. 

 
         In such a case we say that X has a finite mixture distribution and p(.) defined 
by (2.37) is a finite mixture density function. 𝑎1, 𝑎2 , … , 𝑎𝑘  are called mixing 
weights  and 𝑓1(.), 𝑓2(.),  … , 𝑓𝑘(.)  are called the component densities of the 
mixture.  
 
            Mixtures of normal distribution is the focal theme of investigation in 
Elashoff (1972), Dalal (1978) and Ferguson (1983) . Mixtures of exponential 
distributions have important life testing applications .Nassar (1988) has used 
mixtures of exponential distributions in modeling life time data. For instance if a 
batch of electric bulbs consists of two subpopulations and the two subpopulations 
are in proportions 𝑝1 and (1- 𝑝1) and if the failure times of each population is 

assumed to be independently and exponentially distributed with mean 
1

𝜎𝑖
  , i = 1,2, 

the cumulative distribution function of the time to failure is  

𝑝1[ 1 – exp( 
−𝑡

𝜎1
 ) ] + (1 - 𝑝1)[1 – exp(

−𝑡

𝜎2
) ] 

which is a mixture of exponentials. 
 
              The cumulative distribution function of mixture of exponential 
distribution is given by  
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             F(x)  =1 - ∑ 𝑎𝑖𝑒−𝜃𝑖𝑥𝑘
𝑖=1                        -------------------  (2.38) 

𝜃𝑖> 0,  𝑎𝑗>0  and∑ 𝑎𝑖
𝑘
𝑖=1  = 1 . 

 
              For the distribution given in (2.38) the Laplace transform is  

ф𝑓(s)  =  ∑ ( 
𝑎𝑖𝜃𝑖

𝑠+ 𝜃𝑖
)𝑘

𝑖=1     --------------------------------   (2.39) 

 

             A k component mixture, in proportions  𝑎1, 𝑎2 , … , 𝑎𝑘 ,  (∑ 𝑎𝑖
𝑘
𝑖=1  = 1)  of 

the Gamma distribution has probability density function  

f(x)  =   ∑ 𝑎𝑗
𝑘
𝑗=1

𝜃𝑘+1−𝑗

𝛤(𝑘+1−𝑗)
𝑥𝑘−𝑗𝑒−𝜃𝑥    ---------------  (2.40) 

x≥ 0,  𝜃> 0,   0 ≤ 𝑎𝑗 ≤  1,    ∑ 𝑎𝑗
𝑘
𝑗=1   = 1  and k is a positive integer. 

 

          A characterization of a mixture of gamma distribution using conditional 

moments is given by Adatia, Law and Wang (1991). Inference problems associated 

with a two component mixture of gamma distribution is given in Radhakrishna, 

Rao and Anjaneyulu (1992).  

 

            When the probability density function has the form (2.40) its Laplace 

transform turns out to be  

ф𝑓(s)  = ∑
𝑎𝑗

(1+ 
𝑠

𝜃
)𝑘+1−𝑗

𝑘
𝑗=1 ---------------------  (2.41) 

 

             In Chapter III we look in to characterization problems associated with 

(2.40)  using the form of their Laplace transform. 

 

            The concept of mixture distribution in the discrete case, introduced by 

Pearson (1915) , is physically motivated when the underlying random variable 

takes on numerical values. Identifiability of finite Poisson mixtures and finite 

binomial mixtures are examined by Teicher (1961) . Mixture of negative binomials 

, binomials and poisson are discussed in Rider (1962) . Asymptotic study of 

mixture distributions in the discrete set up is given in Johnson, Kotz and Kemp 

(1992).  

 

          In the light of definition (2.37) a finite mixture of geometric distribution has 

probability mass function 

f(x)  =  ∑ 𝑎𝑗𝑝𝑗𝑞𝑥
𝑗

𝑛
𝑗=1                        --------------------  (2.42) 
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0 ≤ 𝑝𝑗 ≤ 1,   𝑞𝑗  = 1 - 𝑝𝑗,  x = 0,1,2, … , 𝑎𝑗> 0   and   ∑ 𝑎𝑗
𝑘
𝑗=1   = 1  and  has the 

probability generating function 

𝑔𝑓(s)  =   ∑ ( 
𝑎𝑗𝑝𝑗

1− 𝑞𝑗𝑠
 )𝑘

𝑗=1 ---------------------  (2.43) 

A finite mixture of negative binomial distribution has the probability mass function 

specified by  

f(x)  =      ∑ 𝑎𝑗
𝑛
𝑗=1 ( 

−𝑗
𝑥

 )𝑝𝑗(−𝑞)𝑥   --------------  (2.44) 

x = 0,1,2, … ,  0 < n <∞,  0 ≤ p ≤ 1,  q = 1 – p,  𝑎𝑗> 0  and  ∑ 𝑎𝑗
𝑘
𝑗=1   = 1 

with probability generating function  

𝑔𝑓(s)  =  ∑ ( 
𝑎𝑗𝑝𝑗

(1− 𝑞𝑗𝑠)𝑗 )𝑛
𝑗=1  

The expressions for the probability generating functions of the mixture of negative 

binomial and geometric distributions form the basis of characterization theorems in 

Chapter IV. 
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CHAPTER III 

PROBABILITY DISTRIBUTIONS HAVING LAPLACE 

TRANSFORMS WITH ZEROS AND NEGATIVE POLES. 

 

3.1    A class of probability density functions having Laplace transforms with  

zeros and negative poles 

Following the terminology used in Chapter II, we denote by ф𝑓(s) the Laplace 

transform of a real function f(x). The present chapter deals with the probability 

density functions having rational Laplace transforms with zeros and negative poles. 

                  We denote by C, the class of real functions f defined on [0, ∞) having 

Laplace transforms with complex zeros and negative poles. That is  

C  =    f  \ф𝑓(s)   =    
∏ (1+

𝑠

𝜂𝑖
)𝑚

𝑖=1

∏ (1+
𝑠

𝜃𝑗
)𝑛

𝑗=1

               -----------(3.1)   

O ≤ 𝜃1 ≤ 𝜃2 ≤.  .  . ≤  𝜃𝑛<∞ ; m and n are integers such that 0 ≤ m < n <∞ and 

𝜂𝑖’s are complex. 

               Let C+ denote the class of probability density functions in C. That is  

C+=  { f \ f  ∈ C,  f(x) ≥ 0  and  ∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

0
 }         --------------- (3.2) 

Before looking into the properties of the class C+ , we first consider the special 

case in which the 𝜃𝑗’ s and 𝜂𝑖’s in (3.1) assume non negative real values. We 

discuss below some conditions on ф𝑓(s), so that ф𝑓(s) corresponds to a probability 

density function. Our first theorem deals with a possible range of s, in ф𝑓(s), that 

renders f a probability density function, which is given in K.J. John and K. R. M. 

Nair (1999). 

Theorem 3.1 

            A necessary condition for the Laplace transform ф𝑓(s) , defined by 
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ф𝑓(s)   =    
∏ (1+

𝑠

𝜂𝑖
)𝑚

𝑖=1

∏ (1+
𝑠

𝜃𝑗
)𝑛

𝑗=1

-----------(3.3)  

O ≤ 𝜃1 ≤ 𝜃2 ≤.  .  . ≤  𝜃𝑛<∞ ,  O ≤ 𝜂1 ≤ 𝜂2 ≤.  .  . ≤  𝜂𝑚<∞, and m and n are 

integers such that  0 ≤ m < n <∞ to correspond to a probability density function 

f(x); x ≥ 0 is that s > - 𝜃1. 

Proof: 

               Using theorem 2.8, if f ∈ C+ with m > 0, then 𝜃1<𝜂1.  

If possible let s < - 𝜃1. Let e be such that  

𝜃1< e <𝜂1<𝜃2 . 

Then    - 𝜂1< -e < -𝜃1 

When  s< - 𝜃1 ,  s can assume the value –e and therefore  

 

ф𝑓(-e)   =    
(1− 

𝑒

𝜂1
)(1− 

𝑒

𝜂2
) … (1− 

𝑒

𝜂𝑚
)

(1− 
𝑒

𝜃1
)(1− 

𝑒

𝜃2
) ...  (1− 

𝑒

𝜃𝑛
)
 

Since all terms except the first term in the denominator in the above expression are 

positive, ф𝑓(-e)is negative. This contradicts the assumption that ф𝑓(s)is the 

Laplace transform of a probability density function. Hences > - 𝜃1. 

Theorem  3.1 provides a lower bound for s in ф𝑓(s), the Laplace transform of 

f(.).  

It may be noticed that the condition of the theorem is not sufficient. For instance if  

ф𝑓(s)   =    

(1− 
𝑠
1
5

)

(1− 
𝑠
1
3

)(1− 
𝑠
1
2

)

 

the corresponding f(.) turns out to be  
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f(x)  =  -2 . 
1

3
  . 𝑒− 

1 

3 
𝑥
+  3 . 

1

2
 . 𝑒− 

1 

2 
𝑥
 

                =   
3

2
  . 𝑒− 

1 

2 
𝑥
( 1 - 

4

9
  . 𝑒− 

𝑥 

6 )  

which is not a probability density function. 

         Theorem 2.8 of Sumita and Masuda (1987) states that the condition  

min (𝜃1, 𝜃2,   .  .  .  , 𝜃𝑛)  ≤ min (𝜂1 , 𝜂2 , .  .  .  , 𝜂𝑚) 

is necessary for ф𝑓(s) to be a Laplace transform. 

However if  

 

ф𝑓(s)   =   
(1− 

𝑠

2.5
)(1− 

𝑠

3
)(1− 

𝑠

3.5
)

(1− 
𝑠

2
)(1− 

𝑠

4
) (1− 

𝑠

5
)(1− 

𝑠

6
)
 

 

Then 𝜃1 = 2 < 2.5 = 𝜂1 . But ф𝑓(s) is not the Laplace transform of a probability 

density function. Hence the condition of the theorem is not sufficient.  

 

In the light of the above observation we relax the condition of the theorem, 

choosing 𝜃1 =  𝜃2  =    .  .  . =  𝜃𝑛, in which case ф𝑓(s) has a multiple pole of order 

n, so as to get a necessary and sufficient condition for ф𝑓(s) in (3.3) tocorrespond 

to the Laplace transform of a probability density function, which is  

given in K.J. John and K. R. M. Nair (1999). 

 

Theorem 3.2 

               Assume that f(.) is a real valued functionover [0, ∞)for which the 

Laplace transform has the form  

ф𝑓(s)  = 

∏ (1+
𝑠

𝜂𝑖
)𝑚

𝑖=1

(1+
𝑠

𝜃
)𝑛

----------------  (3.4) 
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O < 𝜂1 ≤ 𝜂2 ≤.  .  . ≤  𝜂𝑚<∞,  0 <𝜃<∞,  m and n are positive integers such that m 

< n,  n > 1. Then ф𝑓(s)  represents the Laplace transform of a probability density 

function if and only if  𝜃<𝜂1. 

Proof : 

          Assume that (3.4) holds. Taking logarithm of both sides of (3.4) and 

differentiating with respect to s we get 

ф𝐼
𝑓(s)=   ф𝑓(s)𝛹(s)                                    ----------------(3.5) 

Where     ф𝐼
𝑓

(s)    =
𝑑ф𝑓(s)

𝑑𝑠
and  

𝛹(s)      =   ∑
1

𝜂𝑖+𝑠

𝑚
𝑖=1    -  

𝑛

𝑠+ 𝜃
 

Notice that 𝛹(s) is negative if   𝜃<𝜂1.    Successive differentiation of (3.5) gives 

 

ф(𝑘)
𝑓(s) =    ф(𝑘−1)

𝑓(s)𝛹(s)+   
𝑘 − 1

1
   ф(𝑘−2)

𝑓(s)𝛹(1)(s)+ .  . . +  

𝑘 − 1
𝑖

   ф(𝑘−𝑖−1)
𝑓(s)𝛹(𝑖)(s)  + . . . +  ф𝑓(s)𝛹(𝑘−1)(s)   ------------(3.6) 

Where ф(𝑖)
𝑓(s)=

𝑑𝑖ф𝑓(s) 

𝑑𝑠𝑖   ,  i = 1,2, . . . , k. 

and     𝛹(𝑖)(s)=   
𝑑𝑖Ψ(s) 

𝑑𝑠𝑖    ,    i = 1,2, . . . , k-1. 

Observing that 

𝛹(𝑘)(s) < 0 for k = 0,2,4, … 

And  

𝛹(𝑘)(s) > 0 for k = 1,3,5,… 

We have 

ф(𝑘)
𝑓

(s)>  0  for  k = 2,4,6,… 

And    
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ф(𝑘)
𝑓(s)<  0  for  k = 1,3,5,… 

From (3.6) we conclude that  

(−1)𝑘ф(𝑘)
𝑓
(s)≥0  for  all integers k.                  ---------------- (3.7) 

It may be noticed from (3.7) that ф𝑓(s) is completely monotone. Using Bernstein’s 

theorem, in Section(2.1), we see that ф𝑓(s)  specified by (3.4) is the Laplace 

transform of a probability density function. 

The converse follows from Sumita and Masuda(1987). 

 

           It may be noticed that Theorem 3.2 includes the situation when the Laplace 

transform has multiple negative  zeros and a single multiple negative pole, since as 

per conditions of the theorem, some of the 𝜂𝑖’s may be equal. However the 

situations when the Laplace transforms has multiple negative zeros and multiple 

negative poles is not covered by the theorem. 

 

3.2 Mixtures of gamma distributions 

         In this section we consider classes of probability density functions in C+, the 

main emphasis being on mixtures of gamma densities is specified by the 

probability density function 

 

f(x)  =   ∑ 𝑎𝑗
𝑛
𝑗=1

𝜃𝑛+1−𝑗

𝛤(𝑛+1−𝑗)
𝑥𝑛−𝑗𝑒−𝜃𝑥    ---------------  (3.8) 

x≥ 0,  𝜃> 0,   0 ≤ 𝑎𝑗 ≤1,  ∑ 𝑎𝑗
𝑛
𝑗=1   = 1  and n is a positive integer. 

 

             Such densities arises naturally in various contexts. For example consider N 

independent and identically distributed random variables X1,X2, … , XN  with a 

common distribution function F(.) and Laplace transform ф(s). Define     
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SN  =∑ X𝑖
𝑁
𝑖=1  .   

Take N as a random variable independent of the Xi’s with  

P(N = j) 𝑎𝑛+1−𝑗,  j = 1,2, … , n. 

For any j , the Laplace transform of Sj is then 

ф𝑗(s)=  E( 𝑒−𝑠𝑆𝑗) 

                              =  [ ф(𝑠)]𝑗  . 

Now the Laplace transform of SN  is 

ф𝑆𝑁
(s)   =  E( 𝑒−𝑠𝑆𝑁) 

=  EN E(𝑒−𝑠𝑆𝑁/ N=j )      

=  ∑ 𝐸𝑛
𝑗=1 (𝑒−𝑠𝑆𝑗)𝑃( N=j )      

Since  N is independent of the Xi’s,   

ф𝑆𝑁
(s)   =  ∑ [ ф(𝑠)]

𝑗𝑛
𝑗=1 𝑎𝑛+1−𝑗 

 

Specializing to the case when Xi’s are exponential random variables with common 

distribution function 

           F(x)  =  1 - 𝑒−𝜃𝑥 ;  x > 0,  𝜃> 0,  

we get  

ф𝑆𝑁
(s)   =  ∑ (1 +

𝑠

𝜃
)−𝑗𝑛

𝑗=1 𝑎𝑛+1−𝑗-------------  (3.9) 

 

Since (1 +
𝑠

𝜃
)−𝑗is the Laplace transform of a gamma variable with scale 

parameter 𝜃  and shape parameter j , by inversion theorem the distribution of SN 

turns out to be (3.8) 
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         Finite mixture of gamma densities defined in (3.8) can also be considered as 

a generalized length biased distribution . Denoting 𝐴𝑛−1(x), a polynomial of 

degree (n-1) having a stipulated form and h(x) the probability density function of a 

non negative continuous random variable X, Lingappaiah (1988) defines the length 

based distribution as  

f(x)   =     𝐴𝑛−1(x) h(x)                             -------------------  (3.10) 

Taking  

𝐴𝑛−1(x) =  𝑎1
𝑥𝑛−1

𝜇𝐼
𝑛−1

  +  𝑎2
𝑥𝑛−2

𝜇𝐼
𝑛−2

+  … +  𝑎𝑛
1

𝜇𝐼
0

 

With 𝑎𝑖> 0,   ∑ 𝑎𝑖
𝑛
𝑖=1   = 1  ,𝜇𝐼

𝑖  =  E( X𝑖)  and X is a random variable having 

probability density function 

                 H(x)  =𝜃𝑒−𝜃𝑥 , x > 0, 𝜃> 0,  

so that  

𝜇𝐼
𝑖    =  

𝑟 !

𝜃𝑟
 , 

the function f(x) defined in (3.10) reducesto a finite mixture of gamma densities 

given by (3.8). The following theorem characterizes the probability distribution 

specified by (3.8) in terms of the form of the Laplace transform. 

Theorem 3.3 

              Let X be a continuous non negative random variable with a probability 

density function f(x). Then X follows the mixture of gamma distribution specified 

by (3.8) if and only if its Laplace transform has the representation 

 

ф𝑓(s)  = 

∏ (1+
𝑠

𝜂𝑖
)𝑛−1

𝑖=1

(1+
𝑠

𝜃
)𝑛

----------------  (3.11) 

where   - 𝜂𝑖’s are the roots of the polynomial equation 
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∑ (1 +
𝑠

𝜃
)−𝑗𝑛

𝑗=1 𝑎𝑗-------------  (3.12) 

Proof: 

            When X has probability density function (3.8) its Laplace transform 

simplifies to 

 

                           ф𝑓(s)  = 
𝑎1

(1+
𝑠

𝜃
)𝑛

  +  
𝑎2

(1+
𝑠

𝜃
)𝑛−1

+  …  +  
𝑎𝑛

(1+
𝑠

𝜃
).
 

                           =   
𝑎1+𝑎2(1+

𝑠

𝜃
)+⋯+𝑎𝑛(1+

𝑠

𝜃
)

𝑛−1

(1+
𝑠

𝜃
)𝑛

 

                           =   
∑ .𝑛

𝑗=1 𝑎𝑗(1+
𝑠

𝜃
)

𝑗−1

(1+
𝑠

𝜃
)𝑛

 

                           =  
𝑐 ∏ (1+

𝑠

𝜂𝑖
)𝑛−1

𝑖=1

(1+
𝑠

𝜃
)𝑛

-----------------(3.13) 

where 𝜂𝑖’s are given by (3.12). The initial condition    ф𝑓(0)  = 1 gives c = 1, so 

that (3.13) takes the form 

                           ф𝑓(s)  =  

∏ (1+
𝑠

𝜂𝑖
)𝑛−1

𝑖=1

(1+
𝑠

𝜃
)𝑛

 

as claimed . Conversely when  ф𝑓(s)  has the form (3.11), using (3.12) we can 

write  

 

                ф𝑓(s) =      
∑ .𝑛

𝑗=1 𝑎𝑗(1+
𝑠

𝜃
)

𝑗−1

(1+
𝑠

𝜃
)𝑛
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                              =     
𝑎1+𝑎2(1+

𝑠

𝜃
)+⋯+𝑎𝑛(1+

𝑠

𝜃
)

𝑛−1

(1+
𝑠

𝜃
)𝑛

 

                              =    
𝑎1

(1+
𝑠

𝜃
)𝑛

  +  
𝑎2

(1+
𝑠

𝜃
)𝑛−1

  +  …  +  
𝑎𝑛

(1+
𝑠

𝜃
).
 

whichis the Laplace transform of (3.8). Therefore  

f(x)  =   ∑ 𝑎𝑗
𝑛
𝑗=1

𝜃𝑛+1−𝑗

𝛤(𝑛+1−𝑗)
𝑥𝑛−𝑗𝑒−𝜃𝑥,    x ≥ 0,  𝜃> 0,   

 0 ≤ 𝑎𝑗 ≤  1,    ∑ 𝑎𝑗
𝑛
𝑗=1   = 1  and n is a positive integer. 

          In particular when n = 2 in (3.11) , the Laplace transform takes the form  

 

                           ф𝑓(s)  =  

(1+
𝑠

𝜂1
)

(1+
𝑠

𝜃
)2

,  0<𝜃<∞,  0 <𝜂1<∞. 

This is the Laplace transform of a probability density function if - 𝜂𝑖 is the solution 

of the polynomial 

∑ .2
𝑗=1 𝑎𝑗 (1 +

𝑠

𝜃
)

𝑗−1
 = 0. 

That is when 

∑ .2
𝑗=1 𝑎𝑗 (1 +

𝑠

𝜃
)

𝑗−1
 =  1 +

𝑠

𝜂1
 

where 𝑎𝑗> 0  for j = 1,2  and  ∑ .2
𝑗=1 𝑎𝑗  = 1. Equating the coefficients of s in the 

above expression we get 𝜂1𝑎2= 𝜃. Since 0 <𝑎2< 1 we have  𝜃<𝜂1. This condition is 

the same as that of Cox (1955) [Theorem 2.6], when 𝜃1 = 𝜃2= 𝜃. 

 

            Theorem 3.3 provides a necessary and sufficient condition for a gamma 

mixture to have Laplace transform with zeros and a multiple negative pole. This 
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enables one to determine the distribution uniquely through a knowledge of the pole 

and zeros in the Laplace transform. We give below two examples by way of 

illustration. Assume that   ф𝑓(s)  has a multiple pole and single zeros in the form  

ф𝑓(s)   =    
(1− 

𝑠

2
)(1− 

𝑠

3
)

(1− 𝑠)3  . 

Since ф𝑓(s)can be represented as  

ф𝑓(s) =    

1

6

(1+𝑠)
  +  

1

2

(1+𝑠)2   +   

1

3

(1+𝑠)3.  

the corresponding probability density function is given by  

f(x) =   
1

6
𝑒−𝑥  +  

1

2

𝑥

𝛤(2)
𝑒−𝑥  +  

1

3

𝑥2

𝛤(3)
𝑒−𝑥 ;  x > 0 

which is the probability density function of a mixture of gamma distributions. 

 

   Next we consider a situation when the Laplace transform is having a multiple 

pole and multiple zeros. The Laplace transform 

ф𝑓(s)   =    
(1+ 

𝑠

4
)

2

(1+ 
𝑠

2
)

3 

canbe written in the form  

ф𝑓(s) =    

1

4

(1+
𝑠

2
)
  +  

1

2

(1+
𝑠

2
)2

  +   

1

4

(1+
𝑠

2
)3

.  

from which we get the form of the probability density function as  

f(x) =   
1

2
𝑒−2𝑥  +  2

𝑥

𝛤(2)
𝑒−2𝑥  +  2

𝑥2

𝛤(3)
𝑒−2𝑥 ;  x > 0 

which is a mixture of gamma densities. 
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                  A variant of (3.8) can be obtained by changing the number of terms in 

the summand. The gamma mixture under investigation is specified by the 

probability density function 

f(x)  =   ∑ 𝑎𝑗
𝑚
𝑗=1

𝜃𝑛+1−𝑗

𝛤(𝑛+1−𝑗)
𝑥𝑛−𝑗𝑒−𝜃𝑥  ,  ---------------(3.14) 

x ≥ 0,  𝜃> 0,  m and  n are positive integers with  m = n-k,  k = 1,2,3, … , (n-1),  0 

≤ aj ≤ 1,  ∑ 𝑎𝑗
𝑚
𝑗=1  = 1. It may be noticed that (3.4) reduces to (3.8) when m = n. 

Theorem 3.3 can be modified for the class of densities defined by (3.14) as 

follows. 

 

 

Theorem 3.4 

                The probability density function of a continuous non negative random 

variable X has the form (3.14) if and only if its Laplace transform has the 

representation 

                           ф𝑓(s)  =  

∏ (1+
𝑠

𝜂𝑖
)𝑚−1

𝑖=1

(1+
𝑠

𝜃
)𝑛

----------------  (3.15) 

0 <𝜃<∞, m and n are positive integers such that m < n  and  - 𝜂𝑖’s are the roots of 

the polynomial  

∑ .𝑚
𝑗=1 𝑎𝑗 (1 +

𝑠

𝜃
)

𝑗−1
 = 0.------------(3.16) 

Where aj> 0  for j = 1,2. … , m  and ∑ .𝑚
𝑗=1 𝑎𝑗  = 1. 

The theorem follows by proceeding along the same lines as in the proof of 

Theorem 3.3 by representing the Laplace transform of (3.14) in the form (3.15) 

utilizing (3.16) 
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           A special case of (3.14) , by imposing a restriction on the mixing 

probabilities, is  

f(x)  =   ∑ 𝑎𝑗
𝑚
𝑗=1

𝜃𝑛+1−𝑗

𝛤(𝑛+1−𝑗)
𝑥𝑛−𝑗𝑒−𝜃𝑥  ,  ---------------(3.14) 

x≥ 0,  𝜃> 0,  m and  n are positive integers with  m ≤ 𝑛  ,  ∑ 𝑎𝑗
𝑚
𝑗=1  = 1, 𝑎𝑗> 0 

and 

∑ 𝑎𝑗
𝑚
𝑗=1 𝑦𝑗−1= 0        ----------------- (3.18) 

has negative real roots < - 𝜃 .  

 

             We give below a characterization of (3.170 in terms of the Laplace 

transform. The result is published in John (1991). 

 

Theorem 3.5 

          The probability density function of a non negative random variable X is of 

the form (3.17) if and only if its Laplace transform is given by 

 

                           ф𝑓(s)  =  

∏ (1+
𝑠

𝜂𝑖
)𝑚−1

𝑖=1

(1+
𝑠

𝜃
)𝑛

------------ (3.19) 

0 ≤ m-1 < n,   0 < 𝜃 < 𝜂1 ≤ 𝜂2 ≤ … ≤ 𝜂𝑚−1<∞ . 

 

Proof: 

    From the representation of (3.17), 

f(x) = 𝑎1
𝜃𝑛

𝛤(𝑛)
𝑥𝑛−1𝑒−𝜃𝑥 + 𝑎2

𝜃𝑛−1

𝛤(𝑛−1)
𝑥𝑛−2𝑒−𝜃𝑥 + … + 𝑎𝑚

𝜃𝑛−𝑚+1

𝛤(𝑛−𝑚+1)
𝑥𝑛−𝑚𝑒−𝜃𝑥. 

Its Laplace transform is given by  
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                ф𝑓(s)=    
𝑎1

(1+
𝑠

𝜃
)𝑛

  +  
𝑎2

(1+
𝑠

𝜃
)𝑛−1

+  …  +  
𝑎𝑚

(1+
𝑠

𝜃
) 𝑛−𝑚+1

. 

                    =     
𝑎1+𝑎2(1+

𝑠

𝜃
)+⋯+𝑎𝑚(1+

𝑠

𝜃
)

𝑚−1

(1+
𝑠

𝜃
)𝑛

 

                     =      
∑ .𝑚

𝑗=1 𝑎𝑗(1+
𝑠

𝜃
)

𝑗−1

(1+
𝑠

𝜃
)𝑛

 

                     =      
𝑐 ∏ (1+

𝑠

𝜂𝑖
)𝑚−1

𝑖=1

(1+
𝑠

𝜃
)𝑛

 

where  𝜂𝑖’s satisfy (3.18) . 

But  ф𝑓(0)  = 1. This gives  c = 1. 

Therefore from (3.20),    ф𝑓(s)  has the form (3.9). 

Conversely let   ф𝑓(s)  takes the form (3.19). Then we can write  

                ф𝑓(s)=    
𝐴1

(1+
𝑠

𝜃
)𝑛

  +  
𝐴2

(1+
𝑠

𝜃
)𝑛−1

+  …  +  
𝐴𝑚

(1+
𝑠

𝜃
) 𝑛−𝑚+1

. 

which gives 

f(x)  =   ∑ 𝐴𝑗
𝑚
𝑗=1

𝜃𝑛+1−𝑗

𝛤(𝑛+1−𝑗)
𝑥𝑛−𝑗𝑒−𝜃𝑥 

0 ≤ x < ∞,  0< n < ∞,   𝜃> 0,   m ≤ n,  ,  ∑ 𝐴𝑗
𝑚
𝑗=1  = 1 and ,  ∑ 𝐴𝑗

𝑚
𝑗=1 𝑦𝑗−1= 0   has 

negative real roots < - 𝜃.  

 

       Generalization of the mixture of gamma distribution defined in (3.8) in the 

form (3.14) admits only one multiple pole in the Laplace transform. In the sequel, 

we improve upon the form of the probability density function(3.8) in such a way 

that the Laplace transform admits several multiple poles. 
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              Let X be a continuous non negative random variable with probability 

density function  

f(x)  =  ∑ .2
𝑖=1 ∑ 𝑎𝑖𝑗

𝑛𝑖
𝑗=1

𝜃𝑖
𝑛𝑖+1−𝑗

𝛤(𝑛𝑖+1−𝑗)
𝑥𝑛𝑖−𝑗𝑒−𝜃𝑖𝑥

------(3.21) 

0 <𝑛𝑖<∞,  i = 1,2,  𝜃1 , 𝜃2> 0,   x > 0,   0 ≤ 𝑎𝑖𝑗 ≤ 1  and  ∑ .2
𝑖=1 ∑ 𝑎𝑖𝑗

𝑛𝑖
𝑗=1  = 1. 

 

              Next theorem provides a characterization of (3.21) based on the form of 

the Laplace transform.    

Theorem 3.6 

            A probability density function f(x) of a non negativecontinuous random 

variable X takes the form (3.21) , if and only if its Laplace transform has the 

representation 

 

         ф𝑓(s)  =  

∏ (1+
𝑠

𝜂𝑖
)

𝑛1+𝑛2−1
𝑖=1

(1+
𝑠

𝜃1
)𝑛1(1+

𝑠

𝜃2
)𝑛2

------------------------- (3.22) 

where𝑛1 and 𝑛2 are positive integers , 0 <𝜃𝑖< ∞, i = 1,2 and   - 𝜂𝑖’s are the roots of 

the polynomial equation 

(1 +
𝑠

𝜃2
)𝑛2 ∑ .

𝑛1
𝑖=1 𝑎1𝑖 (1 +

𝑠

𝜃1
)

𝑛1−𝑖−1

+  (1 +
𝑠

𝜃1
)𝑛1 ∑ .

𝑛2
𝑗=1 𝑎2𝑗 (1 +

𝑠

𝜃2
)

𝑛2−𝑗−1
= 0 

with  0 ≤ 𝑎𝑖𝑗 ≤ 1  and  ∑ .2
𝑖=1 ∑ 𝑎𝑖𝑗

𝑛𝑖
𝑗=1  = 1. 

Proof: 

               Let X has a probability density function(3.21). Its Laplace transform is 

given by 

                ф𝑓(s)=    
𝑎11

(1+
𝑠

𝜃1
)𝑛1

  +  
𝑎12

(1+
𝑠

𝜃1
)𝑛1−1

+  …  +  
𝑎1𝑛1

(1+
𝑠

𝜃1
) .

. 
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                      +   
𝑎21

(1+
𝑠

𝜃2
)𝑛2

  +  
𝑎22

(1+
𝑠

𝜃2
)𝑛2−1

  +  …  +  
𝑎2𝑛2

(1+
𝑠

𝜃2
) .

. 

 

   =
(1+

𝑠

𝜃2
)𝑛2 ∑ .

𝑛1
𝑖=1 𝑎1𝑖(1+

𝑠

𝜃1
)

𝑛1−𝑖−1
+  (1+

𝑠

𝜃1
)𝑛1 ∑ .

𝑛2
𝑗=1 𝑎2𝑗(1+

𝑠

𝜃2
)

𝑛2−𝑗−1

(1+
𝑠

𝜃1
)𝑛1(1+

𝑠

𝜃2
)𝑛2

 

 

    =
𝑐  ∏ (1+

𝑠

𝜂𝑖
)

𝑛1+𝑛2−1
𝑖=1

(1+
𝑠

𝜃1
)𝑛1(1+

𝑠

𝜃2
)𝑛2

---------------- (3.24) 

using (3.23). 

 

But  ф𝑓(0)  = 1.  Therefore from (3.24), c = 1  and hence we get the form of 

  ф𝑓(s)as in (3.22). 

           Conversely when   ф𝑓(s)  takes the form (3.22),  

  ф𝑓(s)=

(1+
𝑠

𝜃2
)𝑛2 ∑ .

𝑛1
𝑖=1 𝑎1𝑖(1+

𝑠

𝜃1
)

𝑛1−𝑖−1
+  (1+

𝑠

𝜃1
)𝑛1 ∑ .

𝑛2
𝑗=1 𝑎2𝑗(1+

𝑠

𝜃2
)

𝑛2−𝑗−1

(1+
𝑠

𝜃1
)𝑛1(1+

𝑠

𝜃2
)𝑛2

 

 

        =     
𝑎11

(1+
𝑠

𝜃1
)𝑛1

  +  
𝑎12

(1+
𝑠

𝜃1
)𝑛1−1

  +  …  +  
𝑎1𝑛1

(1+
𝑠

𝜃1
) .

. 

                      +   
𝑎21

(1+
𝑠

𝜃2
)𝑛2

  +  
𝑎22

(1+
𝑠

𝜃2
)𝑛2−1

+  …  +  
𝑎2𝑛2

(1+
𝑠

𝜃2
) .

.----(3.25)   

From(3.25) we get f(x) in the form (3.21). 

 



36 
 

           When the Laplace transform admits k multiple poles the natural extension 

of  (3.21) takes the form 

f(x)  =  ∑ .𝑘
𝑖=1 ∑ 𝑎𝑖𝑗

𝑛𝑖
𝑗=1

𝜃𝑖
𝑛𝑖+1−𝑗

𝛤(𝑛𝑖+1−𝑗)
𝑥𝑛𝑖−𝑗𝑒−𝜃𝑖𝑥

    ------(3.21) 

x > 0,  0 <𝑛𝑖<∞, 𝜃𝑖> 0,  i = 1,2, … , k,   0 ≤ 𝑎𝑖𝑗 ≤ 1  and  ∑ .𝑘
𝑖=1 ∑ 𝑎𝑖𝑗

𝑛𝑖
𝑗=1  = 1. 

 

Analogous to theorem(3.6), a characterization for the above class of densities can 

be formulated as follows. 

Theorem 3.7 

           The probability density function of a non negative continuous random 

variable X has the form (3.26) if and only if its Laplace transform has the 

representation 

         ф𝑓(s)  =  

∏ (1+
𝑠

𝜂𝑖
)𝑚

𝑖=1

(1+
𝑠

𝜃1
)𝑛1(1+

𝑠

𝜃2
)𝑛2… (1+

𝑠

𝜃𝑘
)𝑛𝑘

            ---------------------- (3.27) 

where  m = ∑ 𝑛𝑖
𝑘
𝑖=1  – 1,  0 <𝜃𝑖<∞ for I = 1,2, … , k  and  - 𝜂𝑖’s  are the roots of the 

equation 

∑ ∑ 𝑎𝑖𝑗
𝑛𝑖
𝑗=1

𝑘
𝑖=1 (1 +

𝑠

𝜃𝑖
)

𝑗−1
∏ (1 +

𝑠

𝜃𝑧
)𝑛𝑧𝑘

𝑧=1
𝑧≠𝑖

     = 0   -------------  (3.28) 

with  0 ≤ 𝑎𝑖𝑗 ≤ 1  and ∑ ∑ 𝑎𝑖𝑗
𝑛𝑖
𝑗=1

𝑘
𝑖=1 = 1 . 

 

The theorem follows by finding the Laplace transform of (3.26) subject to 

condition (3.28) and the converse follows by expressing  ф𝑓(s)  in the expanded 

form analogous to the proof of Theorem (3.6) 
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3.3   Convolution of a mixture of gamma densities. 

                  An interesting property of the gamma distribution is that it is closed 

under convolutions. For the gamma distribution with shape parameter p and scale 

parameter m, the Laplace transform turns out to be  

ф𝑓(s)  =  (1 +  
𝑠

𝑚
)−𝑝. 

The Laplace transform of the convolution of k gamma densities with shape 

parameters  𝑝1, 𝑝2, . . . , 𝑝𝑘 ,  simplies to  

ф𝑓1∗𝑓2∗ ...∗ 𝑓𝑘
  =   (1 +  

𝑠

𝑚
)−(𝑝1+ 𝑝2+ ...+𝑝𝑘) 

which is the Laplace transform of a gamma distribution with shape parameter 

(𝑝1 +  𝑝2+ . . . +𝑝𝑘).  

                 A finite convolution of mixture of gamma densities is defined as  

f =  𝑓1 ∗ 𝑓2 ∗ . . .∗  𝑓𝑘 -----------------  (3.29) 

where 

𝑓𝑖 (x)  =  ∑ 𝑎𝑗
𝑚𝑖
𝑗=1

𝜃𝑖
𝑛𝑖+1−𝑗

𝛤(𝑛𝑖+1−𝑗)
𝑥𝑛𝑖−𝑗𝑒−𝜃𝑖𝑥--------(3.30) 

x> 0, 0 <𝑛𝑖<∞,  𝑚𝑖 ≤ 𝑛𝑖,  𝜃𝑖> 0,  ∑ 𝑎𝑗
𝑛
𝑗=1  = 1. 

Instead  of utilizing (3.29) , we consider a special case of (3.29), obtained by 

imposing some restrictions on the parameters. 

(a)   Assume that the equation  

∑ 𝑎𝑗
𝑚
𝑗=1 𝑦𝑗−1  = 0  has negative real roots  < - 𝜃𝑖 and  

(b)   the scale parameter  𝜃𝑖’s  are such that  

   0 <𝜃1<𝜃2< . . .  <𝜃𝑘< ∞  
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and the interval  𝐼𝑗 =  (𝜃𝑗, 𝜃𝑗+1) , j = 1,2, … , k contains at most one zero of   ф𝑓𝑖
(s) 

defined in (3.1) 

 

                 The following theorem provides a characterization of convolution of 

gamma mixture in terms of the Laplace transforms having negative zeros and 

negative poles in the above set up.  

Theorem 3.8. 

                  The probability density function f(x)  of a non negative continuous 

random variable has the form (3.29), with parameters satisfying (a)  and  (b) if and 

only if the Laplace transform can be expressed in the form 

         ф𝑓(s)  =  

∏ (1+
𝑠

𝜂𝑖
)𝑚

𝑖=1

∏ (𝑘
𝑗=1 1+

𝑠

𝜃𝑗
)

𝑛𝑗
-------------(3.31) 

0 <𝜃1<𝜂1<𝜃2<𝜂2< . . . <𝜃𝑘<𝜂𝑘 ≤ 𝜂𝑘+1 ≤ . . . ≤ 𝜂𝑚<∞  and 

0 ≤ m =  ∑ (𝑘
𝑖=1 𝑚𝑖 - 1)  <∑ 𝑛𝑗 .

𝑘
𝑗=1  

Proof : 

Let  f=  𝑓1 ∗ 𝑓2 ∗ . . .∗  𝑓𝑘where   𝑓𝑖(x)  is of the form (3.30). In the light of 

Theorem (3.5) we have  

         ф𝑓𝑖
(s)  =  

∏ (1+
𝑠

𝜂𝑖𝑗
)

𝑚𝑖−1

𝑗=1

(1+
𝑠

𝜃𝑖
)𝑛𝑖

-------------------  (3.32) 

0 ≤  𝑚𝑖-1 <𝑛𝑖 ,  0 <𝜃𝑖<𝜆𝑖1 ≤ 𝜆𝑖2 ≤  . . .  ≤  𝜆𝑖 𝑚𝑖−1< ∞. 

Now 

         ф𝑓(s)=  ∏ ф𝑓𝑖

𝑘
𝑖=1 (s) 
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 =    ∏(  

∏ (1 + 𝑠
𝜂𝑖𝑗

)𝑚𝑖−1
𝑗=1

(1 + 𝑠
𝜃𝑖

)
𝑛𝑖

 )
𝑘

𝑖=1

 

𝑠𝑖𝑛𝑐𝑒 

𝜂𝑖   ∈  {𝜆11 , 𝜆12, . . . , 𝜆1 𝑚1−1, 𝜆21 , 𝜆22, . . . , 𝜆2 𝑚2−1, 𝜆𝑘1 , 𝜆𝑘2, . . . , 𝜆𝑘 𝑚𝑘−1} 

for  i =1,2, . . . , m, we can write     ф𝑓(s)as  

 

         ф𝑓(s)  =  

∏ (1+
𝑠

𝜂𝑖
)𝑚

𝑖=1

∏ (𝑘
𝑗=1 1+

𝑠

𝜃𝑗
)

𝑛𝑗
 

where0 ≤ m =  ∑ (𝑘
𝑖=1 𝑚𝑖 - 1)  <∑ 𝑛𝑗 .

𝑘
𝑗=1  The condition  

0 <𝜃1<𝜂1<𝜃2<𝜂2< . . . <𝜃𝑘<𝜂𝑘 ≤ 𝜂𝑘+1 ≤ . . . ≤ 𝜂𝑚< ∞   

follows from (b). 

The numerator of (3.31) can be rearranged by considering those 

𝜆𝑖𝑗 ∈  {𝜆1, 𝜆2, . . . , 𝜆 𝑚},  j = 1,2, . . ., 𝑚𝑖 – 1  

which are greater than 𝜃𝑖, i = 1,2,…, k  and then taking the product so that  

 

         ф𝑓(s)  =  

∏ .𝑘
𝑖=1 ∏ (1+

𝑠

𝜆𝑖𝑗
)

𝑚𝑖−1

𝑗=1

∏ (𝑘
𝑖=1 1+

𝑠

𝜃𝑖
)𝑛𝑖

 

0 ≤  𝑚𝑖-1 <𝑛𝑖 ,  𝜃𝑖<𝜆𝑖𝑗 ,  j = 1,2, … , 𝑚𝑖 − 1 

=    ∏(  

∏ (1 + 𝑠
𝜂𝑖𝑗

)𝑚𝑖−1
𝑗=1

(1 + 𝑠
𝜃𝑖

)
𝑛𝑖

 )
𝑘

𝑖=1

 

                       =     ∏ ф𝑓𝑖

𝑘
𝑖=1 (s)                       by (3.32) 

By (2.7),  f(x) will take the form (3.29). 
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              In Theorem (3.8) we have considered convolution of a finite mixture of 

gamma densities. Instead of taking convolution of mixture of gamma densities , 

one can look into the problem of taking the convolution of gamma densities. That 

is  

f =  𝑓1 ∗ 𝑓2 ∗ . . .∗  𝑓𝑚                   -------------- (3.33) 

where 

𝑓𝑖(x)  =  
𝜃𝑖

𝑝𝑖

𝛤(𝑝𝑖)
𝑒−𝜃𝑖𝑥𝑥𝑝𝑖−1

   ,  𝜃𝑖> 0,  𝑝𝑖 ≥ 1,  i = 1,2, … , m, x >0 and  

n  =∑ 𝑝𝑖
𝑚
𝑖=1  .  

 

In this set up Theorem(3.8) reads as follows. 

The probability density function  f  of a non negative continuous random variable 

is of the form (3.33)  if and only if its Laplace transform is of the form  

 

         ф𝑓(s)  =  
1

∏ (𝑚
𝑖=1 1+

𝑠

𝜃𝑖
)𝑝𝑖

 

              where  𝜃𝑖 ,  𝑝𝑖> 0,  i = 1,2, … , m,  and  n  =  ∑ 𝑝𝑖
𝑚
𝑖=1  . 

 

         Since the class of finite convolutions of exponential densities is subset of the 

class of finite convolutions of gamma densities, the class of probability density 

functions having Laplace transforms with negative zeros and poles contains 

convolutions of exponential as well as convolutions of gamma densities. 
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CHAPTER IV 

PROBABILITY DISTRIBUTIONS HAVING GENERATING 

FUNCTIONS WITH ZEROS AND POSITIVE POLES 

 

4.1.   A class of probability mass functions having probability generating  

functionwith zeros and positive poles. 

As mentioned in section 2.3 when we turn our attention to the discrete case the 

probability generating function can be  advantageously used instead of the Laplace 

transform to examine the distributional aspects. We begin the study by defining a 

class of distributions for which the generating function admits a useful 

representation.  

                 Following the terminology in Srivastava and Manocha (1984), the 

function gf(s)  which possesses a formal power series expansion in s such that  

gf(s) =  ∑ 𝑓𝑛
∞
𝑛=0 (x)  𝑠𝑛 

where each member of the set  { 𝑓𝑛(𝑥) }𝑛=0
∞   is independent of s is called a 

generating function for the set {𝑓𝑛(𝑥)}. If for some set of values of x, gf(s)  is 

analytic at s=0, then gf(s) defined above converges in some domine of the complex 

plain that includes the origin.  

                We denote by E the class of real functions with domain {0,1,2, …}  and 

generating function gf(s) with complex zeros and positive poles. That is  

 

E  ={ f | gf(s)  =   𝑐𝑛
∏ (1− 𝑏𝑖 𝑠)𝑚

𝑖=1

∏ (1− 𝑞𝑗 𝑠)𝑛
𝑗=1

   }              ------------  (4.1) 

where 𝑐𝑛  is a constant,  0 ≤ m < n <∞,  𝑏𝑖 ≠ 𝑞𝑗 ,  0 ≤ 𝑞𝑗 ≤ 1,  j = 1,2, … , n  and 

𝑏𝑖’s are  complex for i = 1,2, … , m. Without loss of generality we assume that  

         0 ≤ 𝑞1 ≤ 𝑞2≤  …  ≤ 𝑞𝑛< 1                                    ------------------  (4.2) 
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Let E+  denote the classof probability mass functions in E. That is  

       E+  =  { f | f ∈ E,  f(x) ≥ 0  and  ∑ 𝑓(𝑥)∞
𝑥=0   = 1 }.    

It can be noticed that the class E+ is closed under convolution and mixing . It may 

be further observed that where as in chapter III we dealt with Laplace transforms 

having negative poles, in the present chapter we consider situations where the 

probability generating function admits positive poles. The reason for this may be 

attributed to the fact that for the members of the class, which we discuss in the 

sequel, the poles should be positive. 

            We first consider the special case when the zeros in (4.1) are real and 

positive. In this case the class is closed under convolution but not under mixing . In 

fact if 

f =  𝑓1 ∗ 𝑓2 ∗ . . .∗  𝑓𝑘  

where𝑓1, 𝑓2, . . . , 𝑓𝑘are independent probability mass functions having generating 

functions 

𝑔𝑓𝑗
(s)  =   𝑐𝑛

∏ (1− 𝑏𝑖𝑗 𝑠)𝑚
𝑖=1

∏ (1− 𝑞𝑙𝑗 𝑠)𝑛
𝑙=1

j = 1,2, … , k. 

then 

𝑔𝑓∗(s)  =  ∏ 𝑔𝑓𝑗

𝑘
𝑗=1 (s) 

                                 =  ∏ [  𝑐𝑛
∏ (1− 𝑏𝑖𝑗 𝑠)𝑚

𝑖=1

∏ (1− 𝑞𝑙𝑗 𝑠)𝑛
𝑙=1

   ]𝑘
𝑗=1  

which is of the same form as (4.1) with bi  and  qj  positive. 

 

The latter part of the statement follows from the following counter example. 

    If   

𝑔𝑓1
(s)  =    

11(1− 
3

11
 𝑠)

15 (1− 
𝑠

3
)(1− 

𝑠

5
)
 



43 
 

                         =   
1

2

2

3

1− 
𝑠

3

  +   
1

2

4

5

1− 
𝑠

5

  ,  

Then, 

𝑓1(𝑥)   =   
1

2
  ( 

2

3
) ( 

1

3
)x   +     

1

2
  ( 

4

5
) ( 

1

5
 )x  , x = 0,1,2, … . 

Obviously𝑓1(𝑥) ∈ E+  withbi’s positive  and real. 

Also if 

     If   

𝑔𝑓2
(s)  =    

11(1− 
5

11
 𝑠)

18 (1− 
𝑠

2
)(1− 

𝑠

3
)
 

 

     =   
1

3

1

2

1− 
𝑠

2

  +   
2

3

2

3

1− 
𝑠

3

  ,  

Then, 

𝑓2(𝑥)   =   
1

3
  ( 

1

2
) ( 

1

2
)x   +     

2

3
  ( 

2

3
) ( 

1

3
 )x  , x = 0,1,2, … 

Here also  𝑓2(𝑥) ∈ E+  withbi’s positive  and real. 

Consider 

gf(s) =   
5

11
𝑔𝑓1

(s)  +  
6

11
𝑔𝑓2

(s) 

               =   
2− 

157

110
 𝑠+ 

1

11
𝑠2

3 (1− 
𝑠

2
)(1− 

𝑠

3
)(1− 

𝑠

5
)
 

Observing that gf(s) has only complex zeros, it follows that f  does not belong to 

the class of  probability mass functions having probability generating functions 

with positive zeros and positive poles. 
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         We give below a sufficient condition for a real valued function fto have the 

representation(4.1) with real bi’s . This result can be viewed as the discrete version 

of the condition suggested in Steutel(1970), reviewed as Theorem 2.7.which is  

given in K.J. John and K. R. M. Nair (2000). 

 

Theorem 4.1. 

Let  f  be a real valued function with domain {0,1,2, …} for which the generating 

function has the representation (4.1) with m = n-1, 

                                                                       -1       

 cn  =              ∑
1

𝑝𝑖

𝑛
𝑖=1

  ∏ (𝑞𝑖− 𝑏𝑗)𝑛−1
𝑗=1

  ∏ (𝑞𝑖− 𝑞𝑗)𝑛
𝑗=1

 

 

0 ≤ 𝑏1 ≤  𝑏2  ≤   … ≤ 𝑏𝑛−1< ∞ 

and                                                                                     ------------- (4.4) 

            0 <𝑞1 ≤  𝑞2  ≤   … ≤ 𝑞𝑛< 1 

The condition  

𝑞𝑖<𝑏𝑖<𝑞𝑖−1,  i = 1,2, … , (n-1)                   ----------------  (4.5) 

implies that f is a probability mass function. 

 

Proof : 

         Writing 𝑔𝑓(s) in the form  

                𝑔𝑓(s)=    
𝐴1

1−𝑞1𝑠
  +  

𝐴2

1−𝑞2𝑠
+  …  +  

𝐴𝑛

1−𝑞𝑛𝑠 . --------  (4.6) 

where𝐴𝑖’s are constants independent of s and using the representation (4.1) , we 

get 
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𝑐𝑛 ∏ (1 −  𝑏𝑖𝑠)𝑛−1
𝑖=1 = 𝐴1 ∏ (1 − 𝑞𝑗𝑠)𝑛

𝑗=2 +𝐴2 ∏ (1 − 𝑞𝑗𝑠)𝑛
𝑗=1
𝑗≠2

+…+𝐴1 ∏ (1 − 𝑞𝑗𝑠)𝑛−1
𝑗=1  

                                                                   ------------------------------------ (4.7) 

setting  s = 
1

𝑞1
   in (4.7) we get 

𝐴1  =  𝑐𝑛1

∏ (1− 
𝑏1
𝑞1

)𝑛−1
𝑖=1

∏ (1− 
𝑞𝑗

𝑞1
)𝑛

𝑗=1

 

𝐴1 is always positive since the numerator and denominator contains the same 

number of terms, each term on the numerator being negative by virtue of the 

conditions (4.5) and each term on the denominator being negative by (4.4) 

In general setting s = 
1

𝑞1
 , in (4.7) we get 

 

𝐴𝑖  =  𝑐𝑛.

∏ (1− 
𝑏𝑗

𝑞𝑖
)𝑛−1

𝑗=1

∏ (1− 
𝑞𝑗

𝑞𝑖
)𝑛

𝑗=1
𝑗≠𝑖

       i = 1,2, … , n         -------- (4.8)     

 

which is also positive since the (i-1)terms of the numerator and denominator are 

positive by the same argument, given above. Hence all 𝐴𝑖’s are positive. Now from 

(4.6)  

f(x)  = 𝐴1𝑞1
𝑥  +  𝐴2𝑞2

𝑥  +  … +   𝐴𝑛𝑞𝑛
𝑥       -------------- (4.9) 

∑ ( 
𝐴𝑖

𝑝𝑖
 )𝑛

𝑖=1 𝑝𝑖𝑞𝑖
𝑥=   ,  x =0,1,2, … 

But f(x) ≥ 0  and∑ 𝑓(𝑥)∞
𝑥=0  =  ∑ ( 

𝐴𝑖

𝑝𝑖
 )𝑛

𝑖=1  , which is equal to unity by (4.8) and the 

choice of 𝑐𝑛 in the theorem. 

 

Mixture of negative binomial distributions. 
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              Analogous to the continuous case, in this section we identify certain 

classes of probability mass functions in E+ which have practicalapplications. 

 

             A finite mixture of geometric distributions with mixing probabilities 𝑎𝑗 , j 

= 1,2, … , n is defined by the probability mass function 

f(x) =  ∑ 𝑎𝑗
𝑛
𝑗=1 𝑝𝑗𝑞𝑗

𝑥                     ------------------  (4.10) 

x = 0,1,2, … ,   0 ≤ 𝑝𝑗 ≤ 1 ,  𝑞𝑗 = 1 - 𝑝𝑗 ,  𝑎𝑗> 0 , and  ∑ 𝑎𝑗
𝑛
𝑗=1  = 1. 

 

            We give below a characterization theorem for the mixture of geometric 

distribution (4.10) based on a representation of probability generating function, 

which is given in K.J. John and K. R. M. Nair (2000). 

 

Theorem 4.2 

           The probability mass function of a discrete random variable is specified by 

(4.10) if and only if the probability generating function has the representation  

 

𝑔𝑓(s)   =  𝑐𝑛.

∏ (1−𝑏𝑖𝑠)𝑛−1
𝑖=1

∏ (1−𝑞𝑗𝑠)𝑛
𝑗=1

                     ---------------- (4.11) 

0 < qi<1  for all i =1,2, … , n,  𝑐𝑛 is a constant and  𝑏𝑖
−1

  for  i =1,2, … , n-1  are 

the roots of the equation  

∑ 𝑎𝑖
𝑛
𝑖=1 𝑝𝑖 ∏ (1 − 𝑞𝑗𝑠)𝑛

𝑗=1
𝑗≠𝑖

=  0         ------------------  (4.12) 

where𝑝𝑖= 1 - 𝑞𝑖,  𝑎𝑖> 0  and  ∑ 𝑎𝑖
𝑛
𝑖=1 = 1. 

 

Proof : 

              When X has the probability mass function (4.10) , the probability 

generating function simplifies to  
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𝑔𝑓(s)  =   
𝑎1𝑝1

1− 𝑞1𝑠
  +  

𝑎2𝑝2

1− 𝑞2𝑠
+  … + 

𝑎𝑛𝑝𝑛

1− 𝑞𝑛𝑠
 

            = 
.𝑎1𝑝1(1− 𝑞2𝑠)(1− 𝑞3𝑠)...(1− 𝑞𝑛𝑠)+⋯+𝑎𝑛𝑝𝑛(1− 𝑞1𝑠)(1− 𝑞2𝑠)...(1− 𝑞𝑛−1𝑠)

∏ (1−𝑞𝑗𝑠)𝑛
𝑗=1

 

             =  

∑ 𝑎𝑖𝑝𝑖
𝑛
𝑖=1 ∏ (1−𝑞𝑗𝑠)𝑛

𝑗=1
𝑗≠𝑖

∏ (1−𝑞𝑗𝑠)𝑛
𝑗=1

 

The above expression can be written using (4.12) as  

𝑔𝑓(s)   =  𝑐𝑛.

∏ (1−𝑏𝑖𝑠)𝑛−1
𝑖=1

∏ (1−𝑞𝑗𝑠)𝑛
𝑗=1

-----------------------  (4.13) 

 

Conversely assume that (4.11) holds. That is  

𝑔𝑓(s)   =  𝑐𝑛.

∏ (1−𝑏𝑖𝑠)𝑛−1
𝑖=1

∏ (1−𝑞𝑗𝑠)𝑛
𝑗=1

 

Inthe light of (4.12) we can write  

𝑔𝑓(s)  = 

∑ 𝑎𝑖𝑝𝑖
𝑛
𝑖=1 ∏ (1−𝑞𝑗𝑠)𝑛

𝑗=1
𝑗≠𝑖

∏ (1−𝑞𝑗𝑠)𝑛
𝑗=1

 

           = 
.𝑎1𝑝1(1− 𝑞2𝑠)(1− 𝑞3𝑠)...(1− 𝑞𝑛𝑠)+⋯+𝑎𝑛𝑝𝑛(1− 𝑞1𝑠)(1− 𝑞2𝑠)...(1− 𝑞𝑛−1𝑠)

∏ (1−𝑞𝑗𝑠)𝑛
𝑗=1

 

 =   
𝑎1𝑝1

1− 𝑞1𝑠
  +  

𝑎2𝑝2

1− 𝑞2𝑠
  +  … + 

𝑎𝑛𝑝𝑛

1− 𝑞𝑛𝑠
 

This gives 

f(x) =  ∑ 𝑎𝑗
𝑛
𝑗=1 𝑝𝑗𝑞𝑗

𝑥 ,  x = 0,1,2, … ,   0 ≤ 𝑝𝑗 ≤ 1 ,  𝑞𝑗 = 1 - 𝑝𝑗  ,  

𝑎𝑗>0 , and  ∑ 𝑎𝑗
𝑛
𝑗=1  = 1. 

 

              As an illustration, consider the probability generating function 
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given by  

𝑔𝑓(s)  = 
18

30

(1−𝑏1𝑠)(1−𝑏2𝑠)

(1− 
3

10
𝑠)(1− 

4

10
𝑠)(1− 

5

10
𝑠)

------------------(4.14) 

where 

 

𝑏𝑖
−1

  =  
73−√109

29
 

and 

𝑏𝑖
−1

  =  
73+√109

29
 

𝑔𝑓(s)  can be written as  

𝑔𝑓(s) =  
1

3

7

10

(1− 
3

10
𝑠)

  +   
1

3

6

10

(1− 
4

10
𝑠)

  +  
1

3

5

10

(1− 
3

10
𝑠)

 

Hence 

f(x)  =  𝑎1(
7

10
)(

3

10
)𝑥+  𝑎2(

6

10
)(

4

10
)𝑥  +  𝑎3(

5

10
)(

5

10
)𝑥   --------------  (4.15) 

with𝑎1 =  𝑎2 = 𝑎3  =   
1

3
   and  x = 0,1,2, … 

 

              Analogous to the mixture of geometric distributions defined in (4.10) , we 

define a finite mixture of negative binomial distributions with mixing probabilities 

aj  , j = 1,2, … , n as follows. 

 

            A discrete random variable X with support {0,1,2, … } is said to follow a 

mixture of negative binomial distributions if the probability mass function is of the 

form  

f(x)  =  ∑ 𝑎𝑗
𝑛
𝑗=1  ( 

−𝑗
𝑥

) 𝑝𝑗(−𝑞)𝑥,  x= 0,1,2, …                   ---------------  (4.16) 

0 ≤ p ≤ 1,  q = 1 – p,  0 < n < ∞,  𝑎𝑗> 0,  ∑ 𝑎𝑗
𝑛
𝑗=1  = 1 

and 
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           ( 
−𝑗
𝑥

)  =
(−1)𝑥𝑗(𝑗+1)…(𝑗+𝑥−1)

𝑥!
 

 

Mixture distributions of the form (4.16) arises naturally in connection with the 

distribution of geometric sums as follows. 

 

               Let X1, X2 , … , XN  be independent and identically distributed non 

degenerate random variable with  

               P(Xi = x) = pqx ,  x = 0,1,2, … , 0 ≤ p ≤1,  q = 1 – p. 

Assume that N is an integer valued random variable independent of the Xi and 

having probability mass function 

P(N=r) =  ar,   r = 1,2, … , n. 

Define SN  =  X1 +X2 + … + XN . Then the probability generating function of SN is 

given by  

𝑔𝑆𝑁
(s)  =  E(𝑠𝑆𝑁)  

                         =  ∑ E[𝑠𝑆𝑁 /𝑁 = 𝑟]𝑛
𝑖=1 P[N=r] 

                       =
𝑎1𝑝

1−𝑞𝑠
+

𝑎2𝑝2

(1−𝑞𝑠)2+    
𝑎3𝑝3

(1−𝑞𝑠)3… +
𝑎𝑛𝑝𝑛

(1−𝑞𝑠)𝑛---  (4.17) 

Since (4.17) is the probability generating function of (4.16) , SN  follows a finite 

mixture of negative binomial distributions 

 The following theorem provides a characterization of the class of mixture of 

negative binomial distributions. 

 

Theorem 4.3 . 

     Let X be a discrete random variable with support the set of non negative 

integers and having probability mass function f(x). Then X is distributed as a 

mixture of negative binomial distributions specified by (4.16) if and only if its 

probability generating function has the form  
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𝑔𝑓(s)   =  𝑐𝑛.

∏ (1−𝑏𝑖𝑠)𝑛−1
𝑖=1

(1−𝑞𝑠)𝑛 --------------  (4.18) 

1 < q < 1,  𝑐𝑛  is a constant , and 𝑏𝑖
−1

,  for I = 1,2, … , n-1 are the roots of the 

equation  

∑ 𝑎𝑗𝑝𝑗(1 − 𝑞𝑠)𝑛−𝑗𝑛
𝑗=1 =  0                        --------------------  (4.19) 

where p = 1 – q,  𝑎𝑗> 0,  and  ∑ 𝑎𝑗
𝑛
𝑗=1  = 1. 

 

Proof : 

               When X has the distribution distribution (4.16) , its probability generating 

function simplifies to  

𝑔𝑓(s)  =   
𝑎1𝑝

1−𝑞𝑠
  +   

𝑎2𝑝2

(1−𝑞𝑠)2+    
𝑎3𝑝3

(1−𝑞𝑠)3… +   
𝑎𝑛𝑝𝑛

(1−𝑞𝑠)𝑛----  (4.20)  

 

                     = 
∑ 𝑎𝑗𝑝𝑗(1−𝑞𝑠)𝑛−𝑗𝑛

𝑗=1

(1−𝑞𝑠)𝑛  

= 𝑐𝑛.

∏ (1−𝑏𝑖𝑠)𝑛−1
𝑖=1

(1−𝑞𝑠)𝑛  

wherethe 𝑏𝑖’s satisfies the relation (4.19). 

             Conversely assume that gf(s) has the form (4.18). Using (4.19) we can 

write 

gf(s)  =
∑ 𝑎𝑗𝑝𝑗(1−𝑞𝑠)𝑛−𝑗𝑛

𝑗=1

(1−𝑞𝑠)𝑛  

             =  
𝑎1𝑝.(1−𝑞𝑠)𝑛−1+𝑎2𝑝2(1−𝑞𝑠)𝑛−2+⋯+ 𝑎𝑛𝑝𝑛

(1−𝑞𝑠)𝑛  

           =  
𝑎1𝑝

1−𝑞𝑠
  +   

𝑎2𝑝2

(1−𝑞𝑠)2+    
𝑎3𝑝3

(1−𝑞𝑠)3… +   
𝑎𝑛𝑝𝑛

(1−𝑞𝑠)𝑛 

so that 
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f(x)  =  ∑ 𝑎𝑗
𝑛
𝑗=1  ( 

−𝑗
𝑥

) 𝑝𝑗(−𝑞)𝑥,  x= 0,1,2, …                   

0 ≤ p ≤ 1,  q = 1 – p,  0 < n < ∞,  𝑎𝑗> 0,  ∑ 𝑎𝑗
𝑛
𝑗=1  = 1 

 

             The mixture of negative binomial distribution (4.16) can be generalized by 

incorporating an additional parameter as follows. 

 

 

            The probability mass function under present condition is  

f(x)  =  ∑ 𝑎𝑗
𝑚
𝑗=1  ( 

−𝑗
𝑥

) 𝑝𝑗(−𝑞)𝑥,  x= 0,1,2, …                   ---------------  (4.21) 

0 ≤ p ≤ 1,  q = 1 – p,  0 < n < ∞,  𝑎𝑗> 0,  ∑ 𝑎𝑗
𝑚
𝑗=1  = 1 ,  m = n-k  for k = 0,1,2, … , 

(n-1)  and n is an integer. 

 

 The following Theorem provides a characterization of (4.21). 

 

Theorem 4.4 . 

          A discrete random variable X in the support of {0,1,2, … } has probability 

mass function specified by (4.21) if and only if the probability generating function 

has the representation 

𝑔𝑓(s)   =  𝑐𝑚.

∏ (1−𝑏𝑖𝑠)𝑚−1
𝑖=1

(1−𝑞𝑠)𝑛    ,   bi ≠ 0  -----------(4.22) 

0 ≤ q ≤ 1 ,𝑐𝑚 is a constant and 𝑏𝑖
−1

,  for i = 1,2, … , m-1   are the roots of the 

equation  

∑ 𝑎𝑗𝑝𝑗(1 − 𝑞𝑠)𝑚−𝑗𝑚
𝑗=1  = 0 

with  p = 1 – q,  aj> 0  and  ∑ 𝑎𝑗
𝑚
𝑗=1   = 1. 
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                   The theorem follows by proceeding on the same lines of proof as that 

of Theorem 4.3. 

       We give below an example of a mixture of negative binomial distribution 

having probability generating function with a positive multiple zero and a positive 

multiple pole , by way of illustration. 

 

        For the negative binomial mixture specified by  

f(x)  =  𝑎1( 
−1
𝑥

 )(
1

3
).(−

2

3
)𝑥+ 𝑎2( 

−2
𝑥

 )(
1

3
)2(−

2

3
)𝑥  + 𝑎3( 

−3
𝑥

 )(
1

3
)3(−

2

3
)𝑥, 

x = 0,1,2, … , when a1 = a3 = 
1

4
and  a2 = 

1

2
  ,  the probability generating function is 

given by  

gf(s)  =
1

4

1

3

(1−
2

3
 𝑠)

  +    
1

2

(
1

3
)2

(1−
2

3
 𝑠)2

  +    
1

4

(
1

3
)3

(1−
2

3
 𝑠)3

 

            =   
4

27

(1− 
𝑠

2
)2

(1−
2

3
 𝑠)3

 

Here𝑏1
−1

 = +2 is a zero of order two and   𝑞1
−1 =  

3

2
  is a pole of order  three. 

The following is an example of a mixture of a negative binomial distribution with 

single positive zeros and a multiple positive pole. For the negative binomial 

mixture specified by  

f(x)  =  𝑎1( 
−1
𝑥

 )(
1

2
).(−

1

2
)𝑥 +  𝑎2( 

−2
𝑥

 )(
1

2
)2(−

1

2
)𝑥  +  𝑎3( 

−3
𝑥

 )(
1

2
)3(−

1

2
)𝑥 , x=0,1,2, 

…, when a1 = a3 = 
1

6
   and  a2 = 

2

3
  ,  the probability generating function is given by  

 

gf(s)  =
13

48

(1−𝑏1𝑠)(1−𝑏2𝑠)

(1−
2

3
 𝑠)3

 

The zeros are given by  

𝑏1
−1

=  4 - √3 
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and 

𝑏2
−1

=  4 + √3 

and𝑞1
−1  =  

3

2
    is a multiple pole of order 3. 

 

        The generalization of the mixture of negative binomial in the form (4.21) 

admits only one multiple pole in the probability generating function. Yet another 

generalization can be formulated in which the probability generating function 

admits several multiple poles. 

 

        Consider the probability mass function given by  

f(x)  =  ∑ .2
𝑖=1 ∑ 𝑎𝑖𝑗

𝑛𝑖
𝑗=1  ( 

−𝑗
𝑥

) 𝑝𝑖
𝑗(−𝑞𝑖)𝑥,  x= 0,1,2, …     --------------  (4.23) 

0 ≤ 𝑝𝑖 ≤ 1,  𝑞𝑖 = 1 – 𝑝𝑖,  0 <𝑛𝑖< ∞, for i = 1,2,  𝑎𝑖𝑗> 0, ∑ .2
𝑖=1 ∑ 𝑎𝑖𝑗

𝑛𝑖
𝑗=1  = 1 . 

 

The following theorem provides a characterization of (4.23) 

 

Theorem 4.5 . 

            The probability mass function f of a non negative random variable with 

support {0,1,2, … }  has the form (4.23)  if and only if its probability generating 

function has the representation 

gf(s)  =𝑐𝑛.

∏ (1−𝑏𝑖𝑠)𝑛−1
𝑖=1

(1−𝑞1𝑠)𝑛1(1−𝑞2𝑠)𝑛2
   ,   bi ≠ 0   -----------(4.24) 

where 𝑛1 and 𝑛2are positive integers , n = 𝑛1 +  𝑛2,  0 ≤ 𝑞𝑖 ≤ 1 for i = 1,2,  𝑐𝑛 is a 

constant and 𝑏𝑖
−1

,  for i = 1,2, … , n-1   are the roots of the equation 

(1 − 𝑞2𝑠)𝑛2 ∑ 𝑎1𝑖𝑝1
𝑖(1 − 𝑞1𝑠)𝑛1−𝑖

𝑛1

𝑖=1

 

+(1 − 𝑞1𝑠)𝑛1 ∑ 𝑎2𝑗𝑝2
𝑗  (1 − 𝑞2𝑠)𝑛2−𝑗𝑛2

𝑗=1 =0. 
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with  0 ≤ 𝑝𝑖 ≤ 1,  𝑞𝑖 = 1- 𝑝𝑖  for all  i =1,2,  𝑎𝑖𝑗> 0  and   ∑ .2
𝑖=1 ∑ 𝑎𝑖𝑗

𝑛𝑖
𝑗=1  = 1 .  

 

Proof : 

          When X has probability mass function (4.23), its probability generating 

function is given by  

gf(s)  =
𝑎11𝑝1

1−𝑞1𝑠
  +   

𝑎12𝑝1
2

(1−𝑞1𝑠)2+  … +   
𝑎1𝑛1𝑝1

𝑛1

(1−𝑞1𝑠)𝑛1
 

                        + 
𝑎21𝑝2

1−𝑞2𝑠
  +   

𝑎22𝑝2
2

(1−𝑞2𝑠)2+  … +   
𝑎2𝑛2𝑝2

𝑛2

(1−𝑞2𝑠)𝑛2
 

=
(1−𝑞2𝑠)𝑛2 ∑ 𝑎1𝑖𝑝1

𝑖(1−𝑞1𝑠)𝑛1−𝑖 +(1−𝑞1𝑠)𝑛1 ∑ 𝑎2𝑗𝑝2
𝑗 (1−𝑞2𝑠)𝑛2−𝑗𝑛2

𝑗=1
𝑛1
𝑖=1

(1−𝑞1𝑠)𝑛1(1−𝑞2𝑠)𝑛2
 

                                                                    ----------------  (4.6) 

(4.26) can be written using (4.25) as  

gf(s)  =𝑐𝑛.

∏ (1−𝑏𝑖𝑠)𝑛−1
𝑖=1

(1−𝑞1𝑠)𝑛1(1−𝑞2𝑠)𝑛2
 

as claimed. 

Conversely when gf(s) has the form (4.24), 

gf(s) =
(1−𝑞2𝑠)𝑛2 ∑ 𝑎1𝑖𝑝1

𝑖(1−𝑞1𝑠)𝑛1−𝑖 +(1−𝑞1𝑠)𝑛1 ∑ 𝑎2𝑗𝑝2
𝑗 (1−𝑞2𝑠)𝑛2−𝑗𝑛2

𝑗=1
𝑛1
𝑖=1

(1−𝑞1𝑠)𝑛1(1−𝑞2𝑠)𝑛2
 

       = 
𝑎11𝑝1

1−𝑞1𝑠
  +   

𝑎12𝑝1
2

(1−𝑞1𝑠)2+  … +   
𝑎1𝑛1𝑝1

𝑛1

(1−𝑞1𝑠)𝑛1
 

                        + 
𝑎21𝑝2

1−𝑞2𝑠
  +   

𝑎22𝑝2
2

(1−𝑞2𝑠)2+  … +   
𝑎2𝑛2𝑝2

𝑛2

(1−𝑞2𝑠)𝑛2
 

Hence 

f(x)  =∑ .2
𝑖=1 ∑ 𝑎𝑖𝑗

𝑛𝑖
𝑗=1  ( 

−𝑗
𝑥

) 𝑝𝑖
𝑗(−𝑞𝑖)𝑥,  x= 0,1,2, …      
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0 ≤ 𝑝𝑖 ≤ 1,  𝑞𝑖 = 1 – 𝑝𝑖,  0 <𝑛𝑖< ∞, for i = 1,2,  𝑎𝑖𝑗> 0, 

∑ .2
𝑖=1 ∑ 𝑎𝑖𝑗

𝑛𝑖
𝑗=1  = 1 . 

The following theorem characterizes (4.27) 

Theorem 4.6. 

             The probability mass function of a non negative discrete random variable 

X with support {0,1,2, …} has the form (4.27) if and only if its probability 

generating function has the form  

gf(s)  =𝑐𝑛.

∏ (1−𝑏𝑖𝑠)𝑛−1
𝑖=1

∏ .𝑘
𝑙=1 (1−𝑞𝑙𝑠)𝑛𝑙

   ,                -----------(4.28) 

where 𝑛1 ,  𝑛2 , . . . , 𝑛𝑘,are positive integers such that n = ∑ 𝑛𝑖
𝑘
𝑖=1 , ,  0 ≤ 𝑞𝑖 ≤ 1 for i 

= 1,2,…, k, 𝑐𝑛 is a constant and 𝑏𝑖
−1

,  for i = 1,2, … , n-1   are the roots of the 

equation 

∑ .𝑘
𝑖=1 ∑ 𝑎𝑖𝑗 𝑝𝑖

𝑗(1 − 𝑞𝑖𝑠)𝑛𝑖−𝑗𝑛𝑖
𝑗=1

∏ (1 − 𝑞𝑧𝑠)𝑛𝑧𝑘
𝑧=1
𝑧≠𝑖

 = 0 

with  0 ≤ 𝑝𝑖 ≤ 1,  𝑞𝑖 = 1- 𝑝𝑖  for all  i =1,2, …, k,𝑎𝑖𝑗> 0  and   ∑ .𝑘
𝑖=1 ∑ 𝑎𝑖𝑗

𝑛𝑖
𝑗=1  = 1 .  

 

The theorem follows proceeding along the same line of proof for Theorem 4.5. 

 

              Properties and characterization of mixture of geometric and negative 

binomial distribution were the theme of investigation in Section 4.2. Now we 

examine the behavior of the convolution of geometric and negative binomial 

distributions. 

 

             A finite convolution of geometric distribution is defined by the probability 

mass function 

             f = f1 * f2 * … * fn------------------------  (4.29) 

where fi(x) = piqi
x  ,  x = 0,1,2, …, pi> 0,  qi = 1-pi , i=1,2, … , n. The probability 

generating function of the convolution given in (4.29) is  
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gf(s)  =∏ ( 
𝑝

1−𝑞𝑖𝑠)
 )𝑛

𝑖=1                 ------------------  (4.30) 

 

            A finite convolution of negative binomial distribution is defined as  

         f = f1 * f2 * … * fn 

where fi(x) = ( 
−𝑟𝑖

𝑥
 ) 𝑝𝑖

𝑟𝑖(−𝑞𝑖)
𝑛 ,  x = 0,1,2, …,  o ≤  pi ≤ 1,  qi = 1-pi , i=1,2, … , n 

and in this case the probability generating function takes the form  

gf(s)  =∏ ( 
𝑝

1−𝑞𝑖𝑠)
 )

𝑟𝑖𝑛
𝑖=1                   ------------------------  (4.31) 

It may be noticed from (4.30) and (4.31) that the finite convolution of geometric as 

well as negative binomial distributions belong to the class E+. 
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CHAPTER V 

PROPERTIES OF DISTRIBUTIONS WITH ZEROS AND POLES 

IN THE LAPLACE TRANSFORM / GENERATING FUNCTION 

5.1. Introduction 

The class of distributions encountered in the previous chapters possesses some 

interesting properties which are of use from the application point of view. In this 

chapter we give a brief discussion of the distributional aspects in respect of the 

class C+ and E+ followed by certain properties such as infinite divisibility and 

properties that arise in the context of geometric compounding . We begin with the 

properties of  gamma mixture considered in section 3.2. 

 

5.2.  Moments and other properties of a finite gamma mixture. 

                  For the mixture of gamma distribution defined by (3.8) the kth order raw 

moment simplifies to 

𝜇𝑘
|
=  E(Xk) 

  =  ∑ 𝑎𝑗
𝑛
𝑗=1

𝜃𝑛+1−𝑗

𝛤(𝑛+1−𝑗)
∫ 𝑒−𝜃𝑥𝑥𝑛+𝑘−𝑗∞

0
  dx  

  =  ∑ 𝑎𝑗
𝑛
𝑗=1

𝜃𝑛+1−𝑗

𝛤(𝑛+1−𝑗)

𝛤(𝑛+𝑘−𝑗+1)

𝜃𝑛+𝑘−𝑗+1  

                     =  
1

𝜃𝑘
∑ 𝑎𝑗

𝑛
𝑗=1  (n+1-j)k ,                ------------------- (5.2) 

where  (n)r  =  n(n+1)(n+2) … (n+r-1) is the ascending factorial of order r. 

 

                   In particular the mean and the variance of the distribution are 
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given by 

             E(X)  =
1

𝜃
∑ 𝑎𝑗

𝑛
𝑗=1  (n+1-j)1      ----------------------  (5.2) 

and 

            V(X)  =
1

𝜃2
∑ 𝑎𝑗

𝑛
𝑗=1  (n+1-j)(n+2-j)  -  [

1

𝜃.
∑ 𝑎𝑗

𝑛
𝑗=1  (n+1-j)]2 --- (5.3) 

Expressions for the mean and variance can also be obtained by using the 

characteristic function. 

The characteristic function of (3.8) simplifies to  

                ф.(t)=    
𝑎1

(1−
𝑖𝑡

𝜃
)𝑛

  +  
𝑎2

(1−
𝑖𝑡

𝜃
)𝑛−1

+  …  +  
𝑎𝑚

(1−
𝑖𝑡

𝜃
) .

. 

Using  the terminology used in chapter III, in terms of the zeros and poles in the 

Laplace transform , we can write the characteristic function as  

ф(t)  =  

∏ (1−
𝑖𝑡

𝜂𝑗
)𝑛−1

𝑗=1

(1−
𝑖𝑡

𝜃
)𝑛

                 ----------  (5.4)  

where 𝜂𝑖’s are the roots of the polynomial equation  

∑ 𝑎𝑗
𝑛
𝑗=1 (1 +

𝑠

𝜃
)𝑗−1=  0.         -----------  (5.5) 

𝑎𝑗  ≥ 0   and   ∑ 𝑎𝑗
𝑛
𝑗=1  =1.          

Thecumulant generating function is given by  

k(t)  =  log ф(t) 

                =  ∑ 𝑙𝑜𝑔𝑛−1
𝑗=1  (1- 

𝑖𝑡

𝜂𝑗
 ) – n log (1- 

𝑖𝑡

𝜃
)                  ------------  (5.6) 

         In the region | t | <𝜃,  log ф(t)  admits Maclaurins expansion, so that (5.6) can 

be expressed as  

k(t)  =  ∑ {𝑛−1
𝑗=1 - 

𝑖𝑡

𝜂𝑗
 - 

(𝑖𝑡)2

2 𝜂𝑗
2 - 

(𝑖𝑡)3

3 𝜂𝑗
3 - 

(𝑖𝑡)4

4 𝜂𝑗
4 - … } + n { 

𝑖𝑡

𝜃
 + 

(𝑖𝑡)2

2 𝜃2  + … }. 

It follows that  
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𝑘1     = 
𝑛

𝜃
  -  ∑

1

𝜂𝑗

𝑛−1
𝑗=1  

𝑘2     = 
𝑛

𝜃2  -  ∑
1

𝜂𝑗
2

𝑛−1
𝑗=1 and 

𝑘3     = 
2𝑛

𝜃3  - 2∑
1

𝜂𝑗
3

𝑛−1
𝑗=1 ---------------  (5.7) 

𝑘4     = 6 {
𝑛

𝜃4  -  ∑
1

𝜂𝑗
4

𝑛−1
𝑗=1 } 

Using the relation between cumulants and central moments, we have for the 

gamma mixture  

       Mean =  
𝑛

𝜃
  -  ∑

1

𝜂𝑗

𝑛−1
𝑗=1          --------------   (5.8) 

and 

      Variance = 
𝑛

𝜃2  -  ∑
1

𝜂𝑗
2

𝑛−1
𝑗=1 ------------(5.9) 

Further, 

Skewness  =
𝜇3

2

𝜇2
3 

                   =  
{ 

2𝑛

𝜃3  − 2 ∑
1

𝜂𝑗
3

𝑛−1
𝑗=1   }2

{ 
𝑛

𝜃2  −  ∑
1

𝜂𝑗
2

𝑛−1
𝑗=1   }3

------------  (5.10) 

and 

Kurtosis  =𝛽2 

=   
𝜇4

.

𝜇2
2 

=  3 + 
6 { 

𝑛

𝜃4  −  ∑
1

𝜂𝑗
4

𝑛−1
𝑗=1  }

{ 
𝑛

𝜃2  −  ∑
1

𝜂𝑗
2

𝑛−1
𝑗=1  }2
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It may be observed from (5.10) and (5.11) that as n becomes large the distribution 

tends to be symmetric and mesokurtic. 

             We can also determine the zeros of Laplace transforms of (3.8) in terms of 

the mixing probabilities aj . We consider the simple case when n=3. In this 

situation, using (5.7), we have  

k1 = 
3

𝜃
  -  ∑

1

𝜂𝑗

2
𝑗=1 ------------------  (5.12) 

and 

𝑘2     = 
3

𝜃2  -  ∑
1

𝜂𝑗
2

2
𝑗=1 ------------  (5.13) 

Also from (5.2) and (5.3) we have, when  n = 3, 

𝜇1
𝐼    = 

1

𝜃
∑ 𝑎𝑗

3
𝑗=1 (4-j) 

     = 
3𝑎1+2𝑎2+ 𝑎3

𝜃
----------------  (5.14) 

and 

𝜇2    =  
1

𝜃2
∑ 𝑎𝑗

3
𝑗=1  (4-j)(5-j) - { 

1

𝜃
∑ 𝑎𝑗(4 − 𝑗)}3

𝑗=1

2
  ----(5.15) 

Using the relations(5.12), (5.13) and (5.15) in the relations k1 = 𝜇1
1  and 𝑘2 = 𝜇2 we 

get 

∑
1

𝜂𝑗

2
𝑗=1   =  

1

𝜃
 {3-(3𝑎1 + 2𝑎2 + 𝑎3) }    -------------- (5.16) 

and 

∑
1

𝜂𝑗
2

.

2
𝑗=1   =  

1

𝜃2
 {3-(12𝑎1 + 6𝑎2 + 2𝑎3) + (3𝑎1  +  2𝑎2  + 𝑎3)  } 

                                                                                  -------------------- (5.17) 

The values of  1  and 𝜂2 can be obtained as the solution of equations (5.16) and 

(5.17). 
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              Graphs of (3.8) for different values of n, mixing probabilities 
1

𝑛
   each and 

𝜃 = 1 are given in Fig. 5.1 and that for n=4  and𝜃 = 1 for different values of the 

mixing probabilities are exhibited in Fig. 5.2. 

5.3. Infinite divisibility of the class C+ having Laplace transforms  

with negative zeros and poles. 

                 We presently establish that the class of distributions in C+  having 

Laplace transforms with negative zeros and poles is infinitely divisible under 

certain conditions. The general form of Laplace transform of density functions 

having negative zeros and poles is  

               w(s)  =

∏ (1+
𝑠

𝜂𝑖
)𝑚

𝑖=1

∏ (1+
𝑠

𝜃𝑗
)

𝑛𝑗𝑘
𝑗=1

                                 ----------  (5.18) 

where 0 <𝜂1≤ 𝜂2≤ … ≤ 𝜂𝑚<∞and  0 <𝜃1 < 𝜃2 < ⋯ < 𝜃𝑛𝑘
<∞. 

 

                The following theorem concerns the infinite divisibility of the  

class C+ . 

Theorem 5.1. 

             The function w(s) defined in (5.18) is the Laplace transform of an 

infinitely divisible distribution if  

∑ 𝑛𝑗𝑒
−𝜃𝑗𝑥𝑘

𝑗=1

∑ 𝑒−𝜂𝑖𝑥𝑚
𝑖=1

≥  1.                                        ------------------- (5.19) 

Proof: 

              From (5.18) we have  w(s) = 𝑒−𝛹(𝑠)     where 𝚿(s) is given by  

𝚿(s)  =∫ ( 
1−𝑒−𝑠𝑥

𝑥
 )

∞

0
( ∑ 𝑛𝑗𝑒−𝜃𝑗𝑥𝑘

𝑗=1 − ∑ 𝑒−𝜂𝑖𝑥𝑚
𝑖=1   )dx 

From (5.19) we have 

( ∑ 𝑛𝑗𝑒−𝜃𝑗𝑥𝑘
𝑗=1 − ∑ 𝑒−𝜂𝑖𝑥𝑚

𝑖=1   ) ≥ 0. 
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Using the result from (2.10) to (2.12) we see that w(s) corresponds to the Laplace 

transform of an infinitely divisible distribution. 

 

5.4.  Gamma mixture in the context of geometric compounding. 

              As pointed out in section (3.2), gamma mixture arises naturally in the 

context of geometric compounding. It was established that the distribution of the 

Nth partial sum, SN, follows the gamma mixture with mixing probabilities 

P(N=j) = an+1-j , j=1,2, … , n.  

when each of the Xi’s follows the exponential law.  

 

          We presently prove a theorem concerning the form of the distribution of SN. 

Theorem 5.2. 

 LetX1, X2, … , XN  be independent and identically distributed random variables 

and  SN = X1 + X2 + … + XNwhere N  is an integer valued random variable . Then 

any two of the following statements implies the third. 

(i) SN has a mixture gamma distribution as defined in (3.8). 

(ii) P(N=r) = an+1-r  for all r = 1,2, … , n. 

(iii) Xi,  i= 1,2, … , N is distributed as exponential with 𝜃- 1. 

Proof: 

When conditions (ii)  and  (iii) holds, the distribution of  SN turns out to be the 

gamma mixture (3.8), which is established in section (3.2) . Hence (i) holds. 

         Assume the (i) and (ii) holds. Observing that the Laplace transform of the 

mixture of gamma distribution defined by (3.8) is given by  

ф𝑆𝑁
(𝑠)  =   

𝑎1

(1+
𝑠

𝜃
)𝑛

  +  
𝑎2

(1+
𝑠

𝜃
)𝑛−1

+  …  +  
𝑎𝑛

(1+
𝑠

𝜃
).
  ------  (5.20) 

when (i) holds the Laplace transform of SN takes the form (5.20) . But by definition 

, the Laplace transform of  SN is  

ф𝑆𝑁
(𝑠)  =   E(𝑒−𝑠𝑆𝑁  )       
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                       =  ∑  E( 𝑒−𝑠𝑆𝑁/N =𝑛
𝑟=1 r ) P(N = r)    

    =  ∑  E( 𝑒−𝑠(𝑋1+𝑋2+⋯+𝑋𝑟)𝑛
𝑟=1   ) P(N = r) 

                      =  𝑎1𝐸𝑒−𝑠(𝑋1+𝑋2+⋯+𝑋𝑛) + 𝑎2𝐸𝑒−𝑠(𝑋1+𝑋2+⋯+𝑋𝑛−1) 

                                 +… +   𝑎𝑛𝐸𝑒−𝑠𝑋1                       ----------------------- (5.21)    

From (5,20) and (5.21) we get 

𝐸𝑒−𝑠𝑋1  =  
1

(1+
𝑠

𝜃
).
 

This implies that Xi is distributed as exponential with parameter 1/𝜃. Also from 

(5.20) and (5.21) we have 

𝐸𝑒−𝑠(𝑋1+ 𝑋2)  =  
1

(1+
𝑠

𝜃
)2

 

That is  

𝐸𝑒−𝑠𝑋1𝐸𝑒−𝑠𝑋2  =  
1

(1+
𝑠

𝜃
)2

 

Hence  X2 follows exponential distribution with parameter 1/𝜃.  

Proceeding like this we see that Xi  is distributed as exponential with parameter 

1/𝜃, establishing (iii). 

       Now assume that (i) and (iii) holds. The Laplace transform of Xi is  

ф𝑋𝑖
(𝑠)   =     

1

(1+
𝑠

𝜃
).

 

The Laplace transform of SN is   

ф𝑆𝑁
(𝑠)  =   E(𝑒−𝑠𝑆𝑁  )       

                       =  ∑  E( 𝑒−𝑠𝑆𝑁/N =𝑛
𝑟=1 r ) P(N = r)    

    =  
𝑃(𝑁=1)

(1+
𝑠

𝜃
).

 +   
𝑃(𝑁=2)

(1+
𝑠

𝜃
)2

  +…  +
𝑃(𝑁=𝑛)

(1+
𝑠

𝜃
)𝑛

    -------- (5.22) 
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Equating the coefficient of  (1 +
𝑠

𝜃
)𝑟, r = 1,2, … , n in the expression for  

ф𝑆𝑁
(𝑠)given by (5.22)  and (5.20)  we get 

P(N=r) = an+1-r , r = 1,2, … , n 

which is same as (ii). 

 

5.5.  Moments and other properties of mixture of negative binomial  

distribution. 

The probability generating function of the mixture of negative binomial 

distribution defined by (4.16) is  

gf(s)  =
𝑎1𝑃

(1−𝑞𝑠). +   
𝑎2𝑝2

(1−𝑞𝑠)2  +…  +  
𝑎𝑛𝑝𝑛

(1−𝑞𝑠)𝑛 

we have 

            EX(r)  = E[X(X-1)(X-2) … {X-(r-1)} 

                      =  
𝑑𝑟𝑔𝑓(𝑠)

𝑑𝑠𝑟  |s=1                                   -----------------------(5.23) 

It follows from (5.23) that 

EX(1)    =  E(X) 

                         =  
𝑞

𝑝
∑ 𝑗 𝑎𝑗

𝑛
𝑗=1  

           E(X)(2) =  
𝑞2

𝑝2
∑ 𝑗(𝑗 + 1)𝑎𝑗

𝑛
𝑗=1  

Variance = E(X)(2) + E(X)(1) – { E𝑋(1)}2 

               =   
𝑞2

𝑝2
∑ 𝑗(𝑗 + 1)𝑎𝑗

𝑛
𝑗=1   +   

𝑞

𝑝
∑ 𝑗 𝑎𝑗

𝑛
𝑗=1   -  { 

𝑞

𝑝
∑ 𝑗 𝑎𝑗

𝑛
𝑗=1  }2 

Graphs of (4.16) for different values of n and mixing probabilities 1/n each are 

given in Fig. 5.3. to Fig. 5.6. and that for n=4 and p=1/3 for different values of the 

mixing probabilities are given in Fig. 5.7. and Fig. 5.8. 
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       The probability generating function of the mixture of geometric distribution 

defined in (4.10) is  

gf(s)  =
𝑎1𝑝1

(1−𝑞1𝑠). +   
𝑎2𝑝2

(1−𝑞2𝑠)2  +…  +  
𝑎𝑛𝑝𝑛

(1−𝑞𝑛𝑠)𝑛 

Hence 

              Mean = ∑ 𝑎𝑗
𝑛
𝑗=1

𝑞𝑗

𝑝𝑗
 

and 

            Variance = 2  ∑ 𝑎𝑗
𝑛
𝑗=1

𝑞𝑗
2

𝑝𝑗
2  +  ∑ 𝑎𝑗

𝑛
𝑗=1

𝑞𝑗

𝑝𝑗
  -  {∑ 𝑎𝑗

𝑛
𝑗=1

𝑞𝑗

𝑝𝑗
 }2 

Graphs of the mixture of geometric distribution defined in (4.10) for different 

values of mixing probabilities are given in Fig. 5.9 to Fig. 5.11 

 

5.6  Negative binomial mixture in the context of geometric compounding. 

      In section 4.2 we have discussed the generation of negative binomial mixture 

by compounding. It was shown that the sum of n independent identically 

distributed random variables follows the mixture of negative binomial distributions 

with mixing probabilities  

P(N=j)  =  aj , j= 1,2, … , n 

when each of Xi’s follows the geometric law.  

 

                The following theorem concerns the form of distribution of  SN. 

Theorem 5.3. 

 Let X1, X2, …, XN be independent and identically distributed random variables 

and  

SN  =  X1 + X2 + … + XN. 

where N is an integer valued random variable. Then any two of the following 

statements implies the other. 
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(i)  SN

𝑑
=
.
   NBMn 

(ii)  P(N=j) = aj , j =1,2, … , n 

(iii) Xi

𝑑
=
.
  geometric (p). 

NBMn is the mixture of negative binomial defined in (4.16). 

Proof: 

             When conditions (ii) and (iii) holds , the validity of (i) is established in 

Section (4.2). 

          Assume that conditions (i) and (ii) holds. The probability generating function 

of the mixture of negative binomial distribution is 

𝑔𝑆𝑁
(s)  =    

𝑎1𝑃

(1−𝑞𝑠). +   
𝑎2𝑝2

(1−𝑞𝑠)2  +…  +
𝑎𝑛𝑝𝑛

(1−𝑞𝑠)𝑛---------- (5.24) 

when (i) and (ii) holds (5.24) takes the form 

𝑔𝑆𝑁
(s)  =    

𝑃 𝑃(𝑁=1)

(1−𝑞𝑠).  +   
𝑝2𝑃(𝑁=2)

(1−𝑞𝑠)2   +…  +
𝑝𝑛𝑃(𝑁=𝑛)

(1−𝑞𝑠)𝑛   ----- (5.25)  

The probability generating function of  SN also can be written as  

ф𝑆𝑁
(𝑠)  =   E(𝑒−𝑠𝑆𝑁  )       

                       =  ∑  E( 𝑒−𝑠𝑆𝑁/N =𝑛
𝑟=1 r ) P(N = r)    

    =  ∑  E( 𝑒−𝑠(𝑋1+𝑋2+⋯+𝑋𝑟)𝑛
𝑟=1   ) P(N = r) 

                   =P(N=1) E 𝑒−𝑠 𝑋1   + p(N=2) E 𝑒−𝑠(𝑋1+𝑋2)+ …  

+ P(N=n) E 𝑒−𝑠(𝑋1+𝑋2+𝑋3)                  -------------(5.26) 

From (5.25) and (5.26) we get  

E 𝑒−𝑠 𝑋1 = 
𝑝

1−𝑞𝑠
------------------(5.27) 

Therefore 
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              X1

𝑑
=
.
  geometric (p). 

E 𝑒−𝑠(𝑋1+𝑋2)=    
𝑝2

(1−𝑞𝑠)2-------------  (5.28) 

Since X1 and X2 are independent, from  (5.27) and (5.28) 

           X2

𝑑
=
.
  geometric (p).     

Proceeding like this we can show that 

Xi

𝑑
=
.

  geometric (p). 

Now assume that the conditions (i) and (iii) holds. Hence the probability 

generating function of SN is given by   

ф𝑆𝑁
(𝑠)  =   E(𝑒−𝑠𝑆𝑁  )       

                       =  ∑  E( 𝑒−𝑠𝑆𝑁/N =𝑛
𝑟=1 r ) P(N = r)    

    =  
𝑃𝑃(𝑁=1)

(1−𝑞𝑠).  +   
𝑃2𝑃(𝑁=2)

(1−𝑞𝑠)2   +…  +
𝑃𝑛𝑃(𝑁=𝑛)

(1−𝑞𝑠)𝑛 ----(5.29) 

From (5.24) and (5.29) , equating the coefficient of { 
𝑝

1−𝑞𝑠
 }𝑗 we get  

P(N=j) = aj , j=1,2, … ,n. 

which is same as (ii). 
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